entry inhibitors
Recently Published Documents


TOTAL DOCUMENTS

509
(FIVE YEARS 141)

H-INDEX

50
(FIVE YEARS 6)

2022 ◽  
Vol 18 (1) ◽  
pp. e1010171
Author(s):  
Judith Grau-Expósito ◽  
David Perea ◽  
Marina Suppi ◽  
Núria Massana ◽  
Ander Vergara ◽  
...  

The development of physiological models that reproduce SARS-CoV-2 infection in primary human cells will be instrumental to identify host-pathogen interactions and potential therapeutics. Here, using cell suspensions directly from primary human lung tissues (HLT), we have developed a rapid platform for the identification of viral targets and the expression of viral entry factors, as well as for the screening of viral entry inhibitors and anti-inflammatory compounds. The direct use of HLT cells, without long-term cell culture and in vitro differentiation approaches, preserves main immune and structural cell populations, including the most susceptible cell targets for SARS-CoV-2; alveolar type II (AT-II) cells, while maintaining the expression of proteins involved in viral infection, such as ACE2, TMPRSS2, CD147 and AXL. Further, antiviral testing of 39 drug candidates reveals a highly reproducible method, suitable for different SARS-CoV-2 variants, and provides the identification of new compounds missed by conventional systems, such as VeroE6. Using this method, we also show that interferons do not modulate ACE2 expression, and that stimulation of local inflammatory responses can be modulated by different compounds with antiviral activity. Overall, we present a relevant and rapid method for the study of SARS-CoV-2.


2022 ◽  
Author(s):  
Toshitada Takemori ◽  
Akiko Sugimoto-Ishige ◽  
Hironori Nishitsuji ◽  
Yushi Futamura ◽  
Michishige Harada ◽  
...  

Hepatitis B virus (HBV) infects 240 million people worldwide. Current therapy profoundly suppresses HBV replication but requires long-term maintenance therapy. Therefore there is still a medical need for an efficient HBV cure. HBV enters host cells by binding via the preS1-domain of the viral L protein to the Na + /Taurocholate Cotransporting Polypeptide (NTCP). Thus, NTCP should be a key target for the development of anti-HBV therapeutics. Indeed, Myrcludex B, a synthetic form of the myristoylated preS1 peptide, effectively reduces HBV/HDV infection and has been approved as Hepcludex® in Europe for the treatment of patients with chronic hepatitis D virus (HDV) infection. We established a monoclonal antibody (mAb) N6HB426-20 that recognizes the extracellular domain of human NTCP and blocks HBV entry in vitro into human liver cells but has much less of an inhibitory effect on bile acid uptake. In vivo , administration of the N6HB426-20 mAb prevented HBV viremia for an extended period of time after HBV inoculation in a mouse model system without strongly inhibiting bile acid absorption. Among the extracellular loops (ECLs) of NTCP, regions of amino acids (aa) 84-87 in ECL1 and aa 157-165 near ECL2 of transmembrane domain 5 are critically important for HBV/HDV infection. Epitope-mapping and the 3D model of the NTCP structure suggested that the N6HB426-20 mAb may recognize aa 276/277 at the tip of ECL4 and interfere with an binding of HBV to the aa 84-87 region. In summary, we identified an in vivo neutralizing NTCP-targeting antibody capable of preventing HBV infection. Further improvements in efficacy of this drug will pave the way for its clinical applications. IMPORTANCE A number of entry inhibitors are being developed to enhance the treatment of HBV patients with oral nucleos(t)ide analogues (NA). To amplify the effectiveness of NA therapy, several efforts have been made to develop therapeutic mAbs with neutralizing activity against HBs antigens. However, the neutralizing effect of these mAbs may be muted by a large excess of HBsAg-positive noninfectious particles in the blood of infected patients. The advantage of NTCP-targeted HBV entry inhibitors is that they remain effective regardless of viral genotype, viral mutations and the presence of subviral particles. Although N6HB426-20 requires a higher dose than Myrcludex to obtain equivalent suppression of HBV in a model mouse system, it maintained the inhibitory effect for a long time post administration in proportion to the half-life of an IgG mAb. We believe that further improvements will make this antibody a promising treatment option for patients with chronic hepatitis B.


2022 ◽  
pp. 116616
Author(s):  
Kohei Tsuji ◽  
Takuya Kobayakawa ◽  
Kiju Konno ◽  
Ami Masuda ◽  
Kohei Takahashi ◽  
...  

2021 ◽  
Vol 12 (4) ◽  
pp. 432-438
Author(s):  
Mohammad Suhail

The effect of HIV-1 on a human’s immune system cannot be ignored. This is the virus that reduces the power of the immune system to fight against any disease. Of course, many anti-HIV drugs are available, and many computational studies have been done to find out their mechanism of action, but the computational study regarding the chemistry behind the mechanism of action was not done yet. Therefore, the main objective of the study was to clarify the chemistry behind the mechanism of action of commercially available anti-HIV drugs. The drugs taken in the presented study were Entry Inhibitors (EIs) and Non-nucleoside reverse transcriptase inhibitors. First, literature data was evaluated computationally to ensure the reliability of the software used for the presented study. It was found that interaction-based experimental results and computationally evaluated results of the literature data were the same. After that, by following the same procedure, a docking study was done on the drugs taken in the current study. In addition, the residues involved in the interactions of EIs and NNRTIs with their receptors were studied to determine the chemistry that acts behind the action of both. It was found that EIs and NNRTIs work differently. It was also predicted that the derivatization of both drugs could make them more effective and active. Therefore, the presented study will be very helpful in the field of medicinal science.


2021 ◽  
Vol 119 (1) ◽  
pp. e2111400119
Author(s):  
Cong Zeng ◽  
John P. Evans ◽  
Tiffany King ◽  
Yi-Min Zheng ◽  
Eugene M. Oltz ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus responsible for the global COVID-19 pandemic. Herein, we provide evidence that SARS-CoV-2 spreads through cell–cell contact in cultures, mediated by the spike glycoprotein. SARS-CoV-2 spike is more efficient in facilitating cell-to-cell transmission than is SARS-CoV spike, which reflects, in part, their differential cell–cell fusion activity. Interestingly, treatment of cocultured cells with endosomal entry inhibitors impairs cell-to-cell transmission, implicating endosomal membrane fusion as an underlying mechanism. Compared with cell-free infection, cell-to-cell transmission of SARS-CoV-2 is refractory to inhibition by neutralizing antibody or convalescent sera of COVID-19 patients. While angiotensin-converting enzyme 2 enhances cell-to-cell transmission, we find that it is not absolutely required. Notably, despite differences in cell-free infectivity, the authentic variants of concern (VOCs) B.1.1.7 (alpha) and B.1.351 (beta) have similar cell-to-cell transmission capability. Moreover, B.1.351 is more resistant to neutralization by vaccinee sera in cell-free infection, whereas B.1.1.7 is more resistant to inhibition by vaccinee sera in cell-to-cell transmission. Overall, our study reveals critical features of SARS-CoV-2 spike-mediated cell-to-cell transmission, with important implications for a better understanding of SARS-CoV-2 spread and pathogenesis.


2021 ◽  
Author(s):  
Peng Gao ◽  
Miao Xu ◽  
Qi Zhang ◽  
Catherine Chen ◽  
Hui Guo ◽  
...  

The cell entry of SARS-CoV-2 has emerged as an attractive drug development target. We previously reported that the entry of SARS-CoV-2 depends on the cell surface heparan sulfate proteoglycan (HSPG) and the cortex actin, which can be targeted by therapeutic agents identified by conventional drug repurposing screens. However, this drug identification strategy requires laborious library screening, which is time-consuming and often limited number of compounds can be screened. As an alternative approach, we developed and trained a graph convolutional network (GCN)-based classification model using information extracted from experimentally identified HSPG and actin inhibitors. This method allowed us to virtually screen 170,000 compounds, resulting in ~2000 potential hits. A hit confirmation assay with the uptake of a fluorescently labeled HSPG cargo further shortlisted 256 active compounds. Among them, 16 compounds had modest to strong inhibitory activities against the entry of SARS-CoV-2 pseudotyped particles into Vero E6 cells. These results establish a GCN-based virtual screen workflow for rapid identification of new small molecule inhibitors against validated drug targets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junyuan Cao ◽  
Siqi Dong ◽  
Yang Liu ◽  
Minmin Zhou ◽  
Jiao Guo ◽  
...  

Lujo virus (LUJV) belongs to the Old World (OW) genus Mammarenavirus (family Arenaviridae). It is categorized as a biosafety level (BSL) 4 agent. Currently, there are no U.S. Food and Drug Administration (FDA)-approved drugs or vaccines specifically for LUJV or other pathogenic OW mammarenaviruses. Here, a high-throughput screening of an FDA-approved drug library was conducted using pseudotype viruses bearing LUJV envelope glycoprotein (GPC) to identify inhibitors of LUJV entry. Three hit compounds, trametinib, manidipine, and lercanidipine, were identified as LUJV entry inhibitors in the micromolar range. Mechanistic studies revealed that trametinib inhibited LUJV GPC-mediated membrane fusion by targeting C410 [located in the transmembrane (TM) domain], while manidipine and lercanidipine inhibited LUJV entry by acting as calcium channel blockers. Meanwhile, all three hits extended their antiviral spectra to the entry of other pathogenic mammarenaviruses. Furthermore, all three could inhibit the authentic prototype mammarenavirus, lymphocytic choriomeningitis virus (LCMV), and could prevent infection at the micromolar level. This study shows that trametinib, manidipine, and lercanidipine are candidates for LUJV therapy and highlights the critical role of calcium in LUJV infection. The presented findings reinforce the notion that the key residue(s) located in the TM domain of GPC provide an entry-targeted platform for designing mammarenavirus inhibitors.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 330
Author(s):  
Elba Mauriz ◽  
Laura M. Lechuga

The emerging risk of viral diseases has triggered the search for preventive and therapeutic agents. Since the beginning of the COVID-19 pandemic, greater efforts have been devoted to investigating virus entry mechanisms into host cells. The feasibility of plasmonic sensing technologies for screening interactions of small molecules in real time, while providing the pharmacokinetic drug profiling of potential antiviral compounds, offers an advantageous approach over other biophysical methods. This review summarizes recent advancements in the drug discovery process of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) inhibitors using Surface Plasmon Resonance (SPR) biosensors. A variety of SPR assay formats are discussed according to the binding kinetics and drug efficacies of both natural products and repurposed drugs. Special attention has been given to the targeting of antiviral agents that block the receptor binding domain of the spike protein (RBD-S) and the main protease (3CLpro) of SARS-CoV-2. The functionality of plasmonic biosensors for high-throughput screening of entry virus inhibitors was also reviewed taking into account experimental parameters (binding affinities, selectivity, stability), potential limitations and future applications.


Sign in / Sign up

Export Citation Format

Share Document