Response surface strategies in constructing statistical bubble flow models for the development of a novel bubble column simulation approach

2012 ◽  
Vol 36 ◽  
pp. 22-34 ◽  
Author(s):  
Waldo Coetzee ◽  
Roelof L.J. Coetzer ◽  
Randhir Rawatlal
2012 ◽  
Vol 51 (21) ◽  
pp. 7398-7409
Author(s):  
Waldo Coetzee ◽  
Roelof L. J. Coetzer ◽  
Randhir Rawatlal

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Samar A. El-Mekkawi ◽  
N. N. El-Ibiari ◽  
Ola A. El-Ardy ◽  
Nabil M. Abdelmonem ◽  
Ahmed H. Elahwany ◽  
...  

Abstract Background Biodiesel is expected to play a key role in the development of a sustainable, economical, and environmentally safe source of energy. The third generation of biodiesel is derived from microalgae and cyanobacteria that have sufficient amount of oil. The optimization of biomass and oil content in biodiesel production based on algal cultivation relies upon several factors. The present experimental work aims at optimizing some of the cultivation conditions to obtain maximum oil and biomass yield and create a prediction model that describe the effect of the initial inoculum concentration, and irradiance on the biomass yield and oil concentration were designed using Design Expert 6.0.8. Results The results revealed that the optimum surface-to-volume ratio for the airlift bubble column photobioreactor was 0.9, and the most applicable model for describing Microcystis aeruginosa growth was the hyperbolic tangent model with a model constant value of 1.294 mg·L− 1·d− 1/μmol·m− 2·s− 1. The optimum cultivation conditions were 81 μmol·m− 2·s− 1 irradiance and 67 mg·L− 1 initial inoculum concentration, and these conditions achieved a biomass yield of 163 mg·L− 1·d− 1 and an oil concentration of 143 mg·L− 1. Conclusions This work focused on the cultivation of microalgae in closed systems. Cyanobacteria as M. aeruginosa has high lipid content, and high lipid productivity makes it suitable as a lipid feed stock for biodiesel production. The response surface method was the most suitable route to study the simultaneous influence of irradiance and initial inoculum concentration through statistical methods as well as to establish a model for predicting the biomass yield and oil concentration of M. aeruginosa.


1999 ◽  
Vol 394 ◽  
pp. 73-96 ◽  
Author(s):  
P. D. MINEV ◽  
U. LANGE ◽  
K. NANDAKUMAR

Multiphase flow modelling is still a major challenge in fluid dynamics and, although many different models have been derived, there is no clear evidence of their relevance to certain flow situations. That is particularly valid for bubbly flows, because most of the studies have considered the case of fluidized beds. In the present study we give a general formulation to five existing models and study their relevance to bubbly flows. The results of the linear analysis of those models clearly show that only two of them are applicable to that case. They both show a very similar qualitative linear stability behaviour. In the subsequent asymptotic analysis we derive an equation hierarchy which describes the weakly nonlinear stability of the models. Their qualitative behaviour up to first order with respect to the small parameter is again identical. A permanent-wave solution of the first two equations of the hierarchy is found. It is shown, however, that the permanent-wave (soliton) solution is very unlikely to occur for the most common case of gas bubbles in water. The reason is that the weakly nonlinear equations are unstable due to the low magnitude of the bulk modulus of elasticity. Physically relevant stabilization can eventually be achieved using some available experimental data. Finally, a necessary condition for existence of a fully nonlinear soliton is derived.


1993 ◽  
Vol 26 (6) ◽  
pp. 637-643 ◽  
Author(s):  
Kenji Okada ◽  
Shinji Shibano ◽  
Yasuharu Akagi

2018 ◽  
Vol 11 (3) ◽  
pp. 22-28
Author(s):  
Zaid Adnan Abdel-Rahman

The main objective of this study was to evaluate the use of batch bubble column to produce high particle size (>300 micron) of sodium bicarbonate product to improve filtration and drying operations in the production process. Lab scale batch bubble column of 80 mm diameter and 0.5 m height was used to study the process for sodium bicarbonate production using 20% sodium carbonate solution as a starting solution. Three operating variables were considered, CO2 gas content (20-100 %), temperature (30-70 oC) and time (0.5-2.5 h). The bicarbonate yield and crystals size were considered to be the objective variables of the process. Response surface methodology (RSM) was used with central composite design (CCD) of experiments. Empirical polynomial multivariable equations were obtained. The reaction time was found to be the most effective operating condition on the yield of sodium bicarbonate, and temperature was found to be the most effective operating condition on crystal size of sodium bicarbonate. The optimum conditions achieved 400 microns particle size at temperature 70 oC and time 2.5 h. Kinetics study of the process showed that zero order reaction with both sodium carbonate and CO2 concentrations was approximately fitted the experimental data, useful for shortcut process design purposes.


Sign in / Sign up

Export Citation Format

Share Document