scholarly journals In situ adaptive tabulation (ISAT) to accelerate transient computational fluid dynamics with complex heterogeneous chemical kinetics

2016 ◽  
Vol 84 ◽  
pp. 36-42 ◽  
Author(s):  
Justin M. Blasi ◽  
Robert J. Kee
2019 ◽  
Vol 25 (2) ◽  
pp. 1253-1262 ◽  
Author(s):  
Graham Goldin ◽  
Huayang Zhu ◽  
Kyle Kattke ◽  
Anthony Dean ◽  
Robert Braun ◽  
...  

2020 ◽  
Author(s):  
Richard Love ◽  
Derek. W. T. Jackson ◽  
J. Andrew G. Cooper ◽  
Jean-Philippe Avouac ◽  
Thomas A. G. Smyth ◽  
...  

<p>Wind flows on Mars are the dominant contemporary force driving sediment transport and associated morphological change on the planet’s dune fields. To fully understand the atmospheric – surface interactions occurring on the dunes, investigations need to be conducted at appropriate length scales (at or below that of any landform features being examined).</p><p>The spatial resolution of Martian Global Circulation Models (GCMs) is too low to adequately understand atmospheric-surface processes. Nevertheless, they can be utilised to establish initial state and boundary conditions for finer-scale simulations. Mesoscale atmospheric models have been used before to understand forcing and modification of entire dune fields. However, their resolution is still too coarse to fully understand interactions between the boundary layer and the surface. This study aims to examine and improve our understanding of local-scale processes using microscale (e.g., 1.5m cell spacing) airflow modelling to better investigate localised topographic effects on wind velocity and associated aeolian geomorphology.</p><p>Toward these aims, this study will simulate microscale wind flow using computational fluid dynamics software (OpenFOAM) at a series of sites containing a variety of topographies and wind regimes. A Mars GCM will provide input for baseline mesoscale modelling runs, the output of which will then be used as input for microscale airflow modelling. The sites used for the study will have excellent orbital, or preferentially, in situ data coverage. Detailed HiRISE imagery will provide high-resolution Digital Terrain Models (DTMs) which will be used by the OpenFOAM simulations. Results from model simulations will be evaluated/validated using both in situ data and geomorphic analysis of imagery.</p>


2005 ◽  
Vol 6 (5) ◽  
pp. 497-512 ◽  
Author(s):  
A Babajimopoulos ◽  
D N Assanis ◽  
D L Flowers ◽  
S M Aceves ◽  
R P Hessel

Modelling the premixed charge compression ignition (PCCI) engine requires a balanced approach that captures both fluid motion as well as low- and high-temperature fuel oxidation. A fully integrated computational fluid dynamics (CFD) and chemistry scheme (i.e. detailed chemical kinetics solved in every cell of the CFD grid) would be the ideal PCCI modelling approach, but is computationally very expensive. As a result, modelling assumptions are required in order to develop tools that are computationally efficient, yet maintain an acceptable degree of accuracy. Multi-zone models have been previously shown accurately to capture geometry-dependent processes in homogeneous charge compression ignition (HCCI) engines. In the presented work, KIVA-3V is fully coupled with a multi-zone model with detailed chemical kinetics. Computational efficiency is achieved by utilizing a low-resolution discretization to solve detailed chemical kinetics in the multi-zone model compared with a relatively high-resolution CFD solution. The multi-zone model communicates with KIVA-3V at each computational timestep, as in the ideal fully integrated case. The composition of the cells, however, is mapped back and forth between KTVA-3V and the multi-zone model, introducing significant computational time savings. The methodology uses a novel re-mapping technique that can account for both temperature and composition non-uniformities in the cylinder. Validation cases were developed by solving the detailed chemistry in every cell of a KIVA-3V grid. The new methodology shows very good agreement with the detailed solutions in terms of ignition timing, burn duration, and emissions.


Sign in / Sign up

Export Citation Format

Share Document