ARES: An efficient approach to adaptive time integration for stiff Differential-Algebraic Equations

2018 ◽  
Vol 119 ◽  
pp. 46-54 ◽  
Author(s):  
Nikos Leterrier
Author(s):  
Jieyu Ding ◽  
Zhenkuan Pan

An adaptive time integration method is developed for the index-3 differential-algebraic equations (DAEs) of multibody systems to improve the computational efficiency as well as the accuracy of the results. Based on the modified general-α method, the adaptive time integration is presented. At each discrete time interval, the time step size is changed through Richardson extrapolation with definable computation accuracy. A rotary rod slider system is used to validate the presented adaptive time integration. The accuracy and efficiency are determined by the expected order of the accuracy in Richardson extrapolation.


2008 ◽  
Author(s):  
Guoping Tang ◽  
Akram N. Alshawabkeh ◽  
Melanie A. Mayes ◽  
Jack C. Parker

Author(s):  
JunWei Chen ◽  
Ye Ding ◽  
Han Ding

This paper proposes an efficient approach for dynamic analysis of a rotating beam using the discrete singular convolution (DSC). By spatially discretizing the nonlinear equations of motion of the rotating beam using the DSC method, natural frequencies of the rotating beam are obtained. Numerical results show that the DSC method accurately captures not only the low-order but also the high-order frequencies of the beam rotating at a high angular velocity in very short time, compared with the classical finite element method. Moreover, by combining the DSC method and the differential quadrature method, the dynamic equations are reduced to a set of algebraic equations. Thus the dynamic response of the rotating beam is resolved accurately and efficiently with much less computational effort, and is able to be numerically stable for long-time integration.


Author(s):  
Olivier A. Bauchau ◽  
Alexander Epple ◽  
Carlo L. Bottasso

This paper addresses practical issues associated with the numerical enforcement of constraints in flexible multibody systems, which are characterized by index-3 differential algebraic equations (DAEs). The need to scale the equations of motion is emphasized; in the proposed approach, they are scaled based on simple physical arguments, and an augmented Lagrangian term is added to the formulation. Time discretization followed by a linearization of the resulting equations leads to a Jacobian matrix that is independent of the time step size, h; hence, the condition number of the Jacobian and error propagation are both O(h0): the numerical solution of index-3 DAEs behaves as in the case of regular ordinary differential equations (ODEs). Since the scaling factor depends on the physical properties of the system, the proposed scaling decreases the dependency of this Jacobian on physical properties, further improving the numerical conditioning of the resulting linearized equations. Because the scaling of the equations is performed before the time and space discretizations, its benefits are reaped for all time integration schemes. The augmented Lagrangian term is shown to be indispensable if the solution of the linearized system of equations is to be performed without pivoting, a requirement for the efficient solution of the sparse system of linear equations. Finally, a number of numerical examples demonstrate the efficiency of the proposed approach to scaling.


Sign in / Sign up

Export Citation Format

Share Document