Modelling household travel energy consumption and CO2 emissions based on the spatial form of neighborhoods and streets: A case study of Jinan, China

2019 ◽  
Vol 77 ◽  
pp. 101134 ◽  
Author(s):  
Yang Jiang ◽  
Peiqin Gu ◽  
Yulin Chen ◽  
Dongquan He ◽  
Qizhi Mao
Recycling ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 25
Author(s):  
Alessio Quintili ◽  
Beatrice Castellani

Municipal solid waste collection and transport are functional activities in waste management, with a significant energy and carbon footprint and a significant effect on the urban environment. An issue related to municipal solid waste collection and transport is their regional and municipal implementation, affected by sorting and recycling strategies at local level. An efficient collection is necessary to optimize the whole recycling process. The present paper shows the results of an energy, environmental, and economic evaluation of a case study, analyzing the fleet used for municipal solid waste collection and transport in 10 municipalities in Central Italy. The current scenario was compared with alternative scenarios on the basis of some parameters for performance evaluation: vehicles’ energy consumption, carbon footprint, routes, and costs. Results show that for passenger cars, the alternative scenario based on an entire fleet of dual compressed natural gas (CNG) vehicles led to a reduction of the CO2 emissions (−2675 kgCO2eq) in the analyzed period (January–August 2019) and a reduction of the energy consumption (−1.96 MJ km−1). An entire fleet of CNG vehicles led to an increase of CO2 emissions: +0.02 kgCO2eqkgwaste−1 (+110%) for compactors (35–75 q) and +0.09 kgCO2eqkgwaste−1 (+377%) for compactors (80–180 q). Moreover, both categories report a higher fuel consumption and specific energy consumption. For waste transport high-capacity vehicles, we propose the installation of a Stop-Start System, which leads to environmental and energy benefits (a saving of 38,332 kgCO2eq and 8.8 × 10−7 MJ km−1kgwaste−1). On three-wheeler vehicles, the installation of the Stop-Start System is completely disadvantageous.


Author(s):  
Hassanean Jassim ◽  
Weizhuo Lu ◽  
Thomas Olofsson

Mass hauling operations play central roles in construction projects. They typically use many haulers that consume large amounts of energy and emit significant quantities of CO2. However, practical methods for estimating the energy consumption and CO2 emissions of such operations during project planning are lacking. This paper presents a detailed model for estimating the energy consumption and CO2 emissions of mass haulers that integrates the mass hauling plan with a set of predictive equations. The mass hauling plan is generated using a planning program such as DynaRoad in conjunction with data on the productivity of selected haulers and the amount of material to be hauled during cutting, filling, borrowing, and disposal operations. This plan is then used as input for estimating the energy consumption and CO2 emissions of the selected hauling fleet. The proposed model will help planners to assess the energy and environmental performance of mass hauling plans, and to select hauler and fleet configurations that will minimize these quantities. The model was applied in a case study, demonstrating that it can reliably predict energy consumption, CO2 emissions, and hauler productivity as functions of the hauling distance for individual haulers and entire hauling fleets.


2011 ◽  
Vol 23 (3) ◽  
pp. 301-310 ◽  
Author(s):  
P.J. Pérez-Martínez ◽  
D. Ming ◽  
G. Dell’Asin ◽  
A. Monzón

2018 ◽  
Vol 13 (1) ◽  
pp. 59-69
Author(s):  
Anton Pitonak ◽  
Martin Lopusniak ◽  
Miloslav Bagona

Abstract In countries of the European Union, the proportion of buildings in the overall energy consumption represents 40% and their proportion in CO2 emissions 35%. Taking into account dependence of the European Union on import of energy, this represents large quantity of energy and CO2 emissions, in spite of the fact that there exist effective solutions for reduction of building energy demand. In Directive 20-20-20, the European Union adopted three main commitments of fulfillment criteria by 2020. On the basis of this directive, the Slovak Republic declares support of renovation of apartment dwelling houses. Taking into account the fact that state subsidy can be obtained only once, and energy requirements of the European Union are increasingly stricter, a comprehensive approach to renovation of buildings is inevitable. At the same time, it is inevitable to propose the renovation of buildings taking into account requirements stated for buildings for year 2020. Two areas were compared within the case study taking into account primary energy and the quantity of CO2 emissions. Both areas have the same built-up area, but one of them is a district city and the second is a suburb. From results it is obvious that the quantity of primary energy is lower by 88% in the district city than in the suburb. The quantity of CO2 emissions is lower by 69% in the district city than in the suburb.


2021 ◽  
Author(s):  
Zainab Al-Zanbouri

Information Technology uses up to 10% of the world’s electricity generation, contributing to CO2 emissions and high energy costs. Data centers consume up to 23% of this energy, and a large fraction of this energy is consumed by databases. Therefore, building an energy efficient (green) database engine will reduce associated energy consumption and CO2 emissions. To understand the factors driving database energy consumption and execution time over the course of their evolution, we conducted an empirical case study of energy consumption of two MySQL database engines, InnoDB and MyISAM, across 12 releases. Moreover, we examined the relation between four software metrics and energy consumption & execution time, to determine the software metrics affecting the greenness and performance of a database. Our analysis shows that database engines energy consumption and execution time increase as databases evolve. Moreover, the Lines of Code metric is strongly correlated with energy consumption and execution time.


2021 ◽  
Vol 4 (1) ◽  
pp. 1-18
Author(s):  
Yasin Yousefi ◽  
Petra Gratton ◽  
Dilshad Sarwar

This study was carried out to investigate the opportunities of improving thermal performance by focusing on envelope effects of a building located in London. Firstly, through a broad literature review of the previous conducted case studies, an investigation of all the building envelope aspects and parameters influencing the thermal performance of the building was conducted to provide critical information of thermal performance of the envelope components within the UK buildings. Then, onsite measurements were carried out to obtain the building's base case heating load using the standard CIBSE GUIDE A 2017 heat load calculation methodology. Neglecting thermal bridging in the heating calculation showed 8% reduction in the building's total heating load. Also, 17% reduction in energy consumption and CO2 emissions was achieved by applying polyurethane-foam and polystyrene-boards as cavity and external wall insulations, respectively. Moreover, the effect of applying both insulation in the energy consumption, CO2 emissions, cost and payback period analysis was analysed.


2021 ◽  
Author(s):  
Zainab Al-Zanbouri

Information Technology uses up to 10% of the world’s electricity generation, contributing to CO2 emissions and high energy costs. Data centers consume up to 23% of this energy, and a large fraction of this energy is consumed by databases. Therefore, building an energy efficient (green) database engine will reduce associated energy consumption and CO2 emissions. To understand the factors driving database energy consumption and execution time over the course of their evolution, we conducted an empirical case study of energy consumption of two MySQL database engines, InnoDB and MyISAM, across 12 releases. Moreover, we examined the relation between four software metrics and energy consumption & execution time, to determine the software metrics affecting the greenness and performance of a database. Our analysis shows that database engines energy consumption and execution time increase as databases evolve. Moreover, the Lines of Code metric is strongly correlated with energy consumption and execution time.


Sign in / Sign up

Export Citation Format

Share Document