Toward a mobile crowdsensing system for road surface assessment

2018 ◽  
Vol 69 ◽  
pp. 51-62 ◽  
Author(s):  
Xiao Li ◽  
Daniel W. Goldberg
Author(s):  
Karim Emara ◽  
Aya El-Kady ◽  
Eman shaaban ◽  
Mohamed ElEliemy

2013 ◽  
Author(s):  
D. Su ◽  
T. Nagayama ◽  
M. Irie ◽  
Y. Fujino

2012 ◽  
Vol 132 (9) ◽  
pp. 1488-1493 ◽  
Author(s):  
Keiji Shibata ◽  
Tatsuya Furukane ◽  
Shohei Kawai ◽  
Yuukou Horita

1989 ◽  
Vol 17 (1) ◽  
pp. 66-84
Author(s):  
A. R. Williams

Abstract This is a summary of work by the author and his colleagues, as well as by others reported in the literature, that demonstrate a need for considering a vehicle, its tires, and the road surface as a system. The central theme is interaction at the footprint, especially that of truck tires. Individual and interactive effects of road and tires are considered under the major topics of road aggregate (macroscopic and microscopic properties), development of a novel road surface, safety, noise, rolling resistance, riding comfort, water drainage by both road and tire, development of tire tread compounds and a proving ground, and influence of tire wear on wet traction. A general conclusion is that road surfaces have both the major effect and the greater potential for improvement.


1973 ◽  
Vol 1 (4) ◽  
pp. 354-362 ◽  
Author(s):  
F. R. Martin ◽  
P. H. Biddison

Abstract Treads made with emulsion styrene-butadiene copolymer (SBR), solution SBR, polybutadiene (BR), and a 60/40 emulsion SBR/BR mixture were built as four-way tread sections on G78-15 belted bias tires, which were driven over both concrete and gravel-textured highways and on a small, circular, concrete test track. The tires were front mounted. When driven on concrete highway, all except the BR tread had either crumbled- or liquid-appearing surfaces, thought to have been formed by mechanical degradation or fatigue. When cornered on concrete, these materials formed small cylindrical particles or rolls. The BR tread had a smooth, granular-textured surface when driven on concrete highway and a ridge or sawtooth abrasion pattern when cornered on concrete. All the materials appeared rough and torn when run on gravel-textured highway. The differences in wear surface formed on BR tread and the other three are thought to be due primarily to the relatively high resilience of BR.


Sign in / Sign up

Export Citation Format

Share Document