Object Detection Using RSSI with Road Surface Reflection Model for Intersection Safety

Author(s):  
Shoma HISAKA ◽  
Shunsuke KAMIJO
2018 ◽  
Vol 51 (1) ◽  
pp. 65-81 ◽  
Author(s):  
N Strbac-Hadzibegovic ◽  
S Strbac-Savic ◽  
M Kostic

Numerous measurements have shown that the standard R classes do not represent adequately many road surfaces used nowadays. Therefore, the construction of portable reflectometers intended for on-site measurements of road surface reflection properties has been given particular attention during the last decade. This paper presents a new procedure for the improvement of the accuracy of such a portable reflectometer. Optimally extrapolating the values of the 20 luminance coefficients (q), each measured by the portable reflectometer for a set of angles of observation (α = 5°–80°), the 20 q-values referring to α = 1° are calculated. This enables their comparison with the corresponding q elements from each of the 447 reduced q-tables derived from the available r-table database, obtained by using a precise laboratory reflectometer on a wide variety of road samples. Selecting the closest reduced q-table, the corresponding r-table and the actual average luminance coefficient can be determined. In order to validate the proposed procedure, which can also be applied to other similar portable reflectometers, measurements of the luminance and overall and longitudinal luminance uniformities were carried out on eleven road-lighting installations. They showed that the results obtained by this procedure deviate only slightly from those obtained using r-tables determined by the laboratory reflectometer.


Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 34 ◽  
Author(s):  
Jisang Yoo ◽  
Gyu-cheol Lee

Moving object detection task can be solved by the background subtraction algorithm if the camera is fixed. However, because the background moves, detecting moving objects in a moving car is a difficult problem. There were attempts to detect moving objects using LiDAR or stereo cameras, but when the car moved, the detection rate decreased. We propose a moving object detection algorithm using an object motion reflection model of motion vectors. The proposed method first obtains the disparity map by searching the corresponding region between stereo images. Then, we estimate road by applying v-disparity method to the disparity map. The optical flow is used to acquire the motion vectors of symmetric pixels between adjacent frames where the road has been removed. We designed a probability model of how much the local motion is reflected in the motion vector to determine if the object is moving. We have experimented with the proposed method on two datasets, and confirmed that the proposed method detects moving objects with higher accuracy than other methods.


2021 ◽  
Author(s):  
Antti Mikkonen ◽  
Hannakaisa Lindqvist ◽  
Jouni Peltoniemi ◽  
Johanna Tamminen

<p>Global coverage of carbon dioxide (CO<sub>2</sub>) satellite observations is necessary for accurate seasonal carbon flux estimates. Sufficient seasonal coverage is particularly important for quantifying the carbon cycle at high Northern latitudes which are sensitive to the rapidly changing climate. However, high latitudes pose significant challenges to reliable space-based observations of greenhouse gases. One reason for the shortage of good quality CO<sub>2</sub> observations in the high latitudes is the low reflectivity of snow-covered surfaces in the CO<sub>2</sub> absorption bands, in addition to large solar zenith angles and frequent cloud coverage over the Arctic and boreal regions. Snow surfaces are highly forward-scattering and therefore the traditional nadir-viewing geometries over land might not be optimal. In addition, the contributions from the 1.6 um and 2.0 um CO<sub>2</sub> absorption bands need to be evaluated over snow. In this work, we present a realistic, non-Lambertian surface reflection model of snow based on snow reflectance measurements and examine results of atmospheric radiative transfer simulations in various satellite observation geometries and the contributions from different absorption bands. This research lays important ground work for a dedicated feasibility study of CO<sub>2</sub> retrievals over snow, which would ultimately help increase the quantity and reliability of satellite observations at high latitudes from late winter to spring – an important period for the carbon cycle in the rapidly changing Arctic climate.</p>


2021 ◽  
Author(s):  
Ronny Stricker ◽  
Dustin Aganian ◽  
Maximilian Sesselmann ◽  
Daniel Seichter ◽  
Marius Engelhardt ◽  
...  

Author(s):  
Kumiko Kikuchi ◽  
Shoji Tominaga ◽  
Jon Y. Hardeberg

We have developed a system to measure both the optical properties of facial skin and the three-dimensional shape of the face. To measure the three-dimensional facial shape, our system uses a light-field camera to provide a focused image and a depth image simultaneously. The light source uses a projector that produces a high-frequency binary illumination pattern to separate the subsurface scattering and surface reflections from the facial skin. Using a dichromatic reflection model, the surface reflection image of the skin can be separated further into a specular reflection component and a diffuse reflection component. Verification using physically controlled objects showed that the separation of the optical properties by the system correlated with the subsurface scattering, specular reflection, or diffuse reflection characteristics of each object. The method presented here opens new possibilities in cosmetology and skin pharmacology for measurement of the skin’s gloss and absorption kinetics and the pharmacodynamics of various external agents.


Sign in / Sign up

Export Citation Format

Share Document