The application of compact residual distribution schemes to two-phase flow problems

2009 ◽  
Vol 38 (10) ◽  
pp. 1950-1968 ◽  
Author(s):  
E. Valero ◽  
J. de Vicente ◽  
G. Alonso
2007 ◽  
Vol 04 (02) ◽  
pp. 299-333 ◽  
Author(s):  
D. ZEIDAN ◽  
A. SLAOUTI ◽  
E. ROMENSKI ◽  
E. F. TORO

We outline an approximate solution for the numerical simulation of two-phase fluid flows with a relative velocity between the two phases. A unified two-phase flow model is proposed for the description of the gas–liquid processes which leads to a system of hyperbolic differential equations in a conservative form. A numerical algorithm based on a splitting approach for the numerical solution of the model is proposed. The associated Riemann problem is solved numerically using Godunov methods of centered-type. Results show the importance of the Riemann problem and of centered schemes in the solution of the two-phase flow problems. In particular, it is demonstrated that the Slope Limiter Centered (SLIC) scheme gives a low numerical dissipation at the contact discontinuities, which makes it suitable for simulations of practical two-phase flow processes.


2019 ◽  
Vol 390 ◽  
pp. 405-424
Author(s):  
S. Parameswaran ◽  
J.C. Mandal

Author(s):  
Moon-Sun Chung ◽  
Youn-Gyu Jung ◽  
Sung-Jae Yi

This study discusses on the implementation of an upwind method for a new 2-dimensional 2-fluid model including the surface tension effect in the momentum equations. This model consists of a complete set of 8 equations including 2-mass, 4-momentum, and 2-internal energy conservation equations having all real eigenvalues. Based on this equation system with upwind numerical method, the present authors first make a pilot 2-dimensional code and then solve some benchmark problems to verify whether this model and numerical method is able to properly solve some fundamental one-dimensional two-phase flow problems or not.


2012 ◽  
Vol 232 ◽  
pp. 279-283 ◽  
Author(s):  
Wei Zhang ◽  
You Hong Tang ◽  
Cheng Bi Zhao ◽  
Cheng Zhang

A numerical model based on the two-phase flow model for incompressible viscous fluid with a complex free surface has been developed in this study. The two-step projection method is employed to solve the Navier–Stokes equations in the numerical solutions, and finite difference method on a staggered grid is used throughout the computation. The two-order accurate volume of fluid (VOF) method is used to track the distorted and broken free surfaces. The two-phase model is first validated by simulating the dam break over a dry bed, in which the numerical results and experimental data agree well. Then 2-D fluid sloshing in a horizontally excited rectangular tank at different excitation frequencies is simulated using this two-phase model. The results of this study show that the two-phase flow model with VOF method is a potential tool for the simulation of nonlinear fluid sloshing. These studies demonstrate the capability of the two-phase model to simulate free surface flow problems with considering air movement effects.


Sign in / Sign up

Export Citation Format

Share Document