scholarly journals Immersed boundary finite element method for blood flow simulation

2021 ◽  
pp. 105162
Author(s):  
G.C. Bourantas ◽  
D.S. Lampropoulos ◽  
B.F. Zwick ◽  
V.C. Loukopoulos ◽  
A. Wittek ◽  
...  
2002 ◽  
Vol 35 (7) ◽  
pp. 660-669 ◽  
Author(s):  
Shuichi Iwata ◽  
Tsutomu Aragaki ◽  
Hideki Mori ◽  
Masahito Hattori ◽  
Hikaru Waki

2018 ◽  
Vol 29 (04) ◽  
pp. 1850038 ◽  
Author(s):  
Chun-Lin Gong ◽  
Zhe Fang ◽  
Gang Chen

A numerical approach based on the immersed boundary (IB), lattice Boltzmann and nonlinear finite element method (FEM) is proposed to simulate hydrodynamic interactions of very flexible objects. In the present simulation framework, the motion of fluid is obtained by solving the discrete lattice Boltzmann equations on Eulerian grid, the behaviors of flexible objects are calculated through nonlinear dynamic finite element method, and the interactive forces between them are implicitly obtained using velocity correction IB method which satisfies the no-slip conditions well at the boundary points. The efficiency and accuracy of the proposed Immersed Boundary-Lattice Boltzmann-Finite Element method is first validated by a fluid–structure interaction (F-SI) benchmark case, in which a flexible filament flaps behind a cylinder in channel flow, then the nonlinear vibration mechanism of the cylinder-filament system is investigated by altering the Reynolds number of flow and the material properties of filament. The interactions between two tandem and side-by-side identical objects in a uniform flow are also investigated, and the in-phase and out-of-phase flapping behaviors are captured by the proposed method.


Author(s):  
Yong-Fei Yang ◽  
Ke Wang ◽  
Qian-Fei Lv ◽  
Roohollah Askari ◽  
Qing-Yan Mei ◽  
...  

2010 ◽  
Vol 132 (11) ◽  
Author(s):  
X. Zheng ◽  
Q. Xue ◽  
R. Mittal ◽  
S. Beilamowicz

A new flow-structure interaction method is presented, which couples a sharp-interface immersed boundary method flow solver with a finite-element method based solid dynamics solver. The coupled method provides robust and high-fidelity solution for complex flow-structure interaction (FSI) problems such as those involving three-dimensional flow and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the vocal folds during phonation. Both two- and three-dimensional models have been examined and qualitative, as well as quantitative comparisons, have been made with established results in order to validate the solver. The solver is used to study the onset of phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a three-dimensional model and results from these studies are also presented.


2018 ◽  
Vol 15 (07) ◽  
pp. 1850063 ◽  
Author(s):  
Chunlin Gong ◽  
Zhe Fang ◽  
Gang Chen

A nonlinear finite element method (FEM) was introduced into the immersed boundary (IB) — lattice Boltzmann method (LBM) framework to simulate the nonlinear fluid–solid interactions for moving deformable objects in incompressible fluid flow. The fluid motion is obtained by solving the discrete lattice Boltzmann equation, the moving boundaries of the solids are handled by the IB method, and the nonlinear dynamics of the deforming/moving objects are calculated by nonlinear FEM solvers in which the structural nodes are also set as Lagrangian markers to track the moving boundaries of the structures in IB method. The simulation results indicate that the proposed IB-LBM-FEM simulation framework not only satisfies the nonslip boundary condition well at the boundary points, but also has better accuracy for capturing nonlinearity because of its mature nonlinear FEM solver.


Sign in / Sign up

Export Citation Format

Share Document