heterogeneous reservoir
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 45)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 1 (1) ◽  
pp. 634-643
Author(s):  
Suranto Suranto ◽  
Ratna Widyaningsih ◽  
M. Anggitho Huda

The use of chemical injection has been widely used in the oil field on a large scale. One of the enhanced oil recovery (EOR) methods to increase production from old oil fields is through polymer surfactant injection, which functions to reduce interfacial tension and water-oil mobility ratio. This study focuses on developing a simulation model for chemical injection of polymer surfactant reservoirs by hypothetically making heterogeneous reservoir models in each layer with dimensions of 10x10x4. It consists of one a vertical well which is producer well located at the top of the left corner and one an injection well which is located at the bottom of right corner. This study shows a comparison between surfactant injection, polymer injection and SP injection using the same surfactant and polymer concentration with a concentration of 1000 ppm with 0.3 PV. Oil recovery in polymer injection turned out to be quite high compared to other chemical injections. In polymer injection, the oil recovery was 4.17%. Meanwhile, surfactant injection and SP injection increased by 0.59% and 0.61, respectively.


2021 ◽  
pp. 1-36
Author(s):  
Shuyang Liu ◽  
Ramesh Agarwal ◽  
Baojiang Sun

Abstract CO2 enhanced gas recovery (CO2-EGR) is a promising, environment-friendly technology with simultaneously sequestering CO2. The goals of this paper are to conduct simulations of CO2-EGR in both homogeneous and heterogeneous reservoirs to evaluate effects of gravity and reservoir heterogeneity, and to determine optimal CO2 injection time and injection rate for achieving better natural gas recovery by employing a genetic algorithm integrated with TOUGH2. The results show that gravity segregation retards upward migration of CO2 and promotes horizontal displacement efficiency, and the layers with low permeability in heterogeneous reservoir hinder the upward migration of CO2. The optimal injection time is determined as the depleted stage, and the corresponding injection rate is optimized. The optimal recovery factors are 62.83 % and 64.75 % in the homogeneous and heterogeneous reservoirs (804.76 m × 804.76 m × 45.72 m), enhancing production by 22.32 × 103 and 23.00 × 103 t of natural gas and storing 75.60 × 103 and 72.40 × 103 t CO2 with storage efficiencies of 70.55 % and 67.56 %, respectively. The cost/benefit analysis show that economic income of about 8.67 and 8.95 million USD can be obtained by CO2-EGR with optimized injection parameters respectively. This work could assist in determining optimal injection strategy and economic benefits for industrial scale gas reservoirs.


2021 ◽  
Author(s):  
Mark Oatey ◽  
Fay Duff ◽  
Neil Emslie ◽  
Steven Christie ◽  
Rida Rikabi ◽  
...  

Abstract In this paper, an end-to-end evaluation service using well historical production, petrophysics and reservoir data combined with new logs to perform well intervention solution methodology is followed. Across four wells, production logging data is acquired and analysed to understand the current performance of different heterogeneous layers. Combining this with openhole data, additional perforations and reperforations are planned. Perforations are carried out using deep-penetration charges to create a larger and deeper flow path between the reservoir and the wellbore. Post-perforation production logs are carried out, and the data is analysed to understand the effectiveness of newly perforated layers. Detailed production enhancement of all four wells is discussed in the paper. The majority of the wells displayed a significant increase in production when compared with pre-intervention flow rates. Minor scale buildup in the production liner was observed during pre-perforation production log data which was observed to be cleared during post-perforation production log data. The deliverability of the wells had also gone up, with similar production rates at much higher bottomhole pressure compared with pressures before intervention. This also confirmed the effectiveness of deep-penetration charges during perforation in providing better conduit from reservoir to wellbore. Additional perforations carried out, based on the heterogeneity of the reservoir and combining the openhole data, proved to be highly effective, with high deliverability observed from these new layers. In conclusion, a successful production enhancement of these low-flow-rate gas condensate wells was achieved with an end-to-end solution. A highly heterogeneous reservoir with multiple thinly bedded layers presented challenges in understanding their productivity. The combination of pre-perforation production log and post-perforation production log enabled evaluation of the deliverability of the complex heterogeneous reservoir. Further, production enhancement from each reperforated interval was confirmed using a direct measurement, i.e., production log data instead of relying on surface flow rates to better understand the downhole dynamics.


Author(s):  
Shams Kalam ◽  
Usama Yousuf ◽  
Sidqi A. Abu-Khamsin ◽  
Umair Bin Waheed ◽  
Rizwan Ahmed Khan

Author(s):  
Mohammad Yunus Khan ◽  
Ajay Mandal

AbstractAvailability of gases at the field level makes attractive to water-alternating-gas (WAG) process for low viscosity and light oils carbonate reservoir. However, impact of reservoir heterogeneity on WAG performance is crucial before field application. In general, ramp carbonates have heterogeneity due to variation of permeability and porosity. However, WAG performance significantly affected by permeability variations. This article investigates merits and demerits of WAG displacement due to permeability heterogeneities such as permeability anisotropy, high permeability streaks (HKS), matrix permeability, dolomite and thin dense stylolite layers. High-resolution compositional simulations with tuned equation of state (EoS) were carried out using 2D and 3D sector models. The study focuses on WAG performance in terms of oil recovery, vertical sweep, solvent utilization, gas oil ratio (GOR), water cut (WCT), WAG response time, gravity override, hysteresis, un-contacted oil saturation and economics. The results of simulation show that the heterogeneous reservoir provides initially faster WAG response, lower expected ultimate recovery (EUR), faster gas breakthrough, higher GOR and WCT production compared to homogeneous reservoir. The gas gravity override at smaller wells spacing is less in homogeneous reservoir as compared to heterogeneous reservoir, but it is reverse in case of larger well spacing. In heterogeneous reservoir, the HKS shows significant gas override resulting in poor vertical sweep due to capillary holding, and the high permeability dolomite layer shows early water breakthrough. This reservoir has higher solvent utilization in initial stage, and then, it becomes nearly equal to homogeneous reservoir. Simulation in both reservoirs overestimates incremental recovery of 2–3% OOIP at one pore volume injection because of not involving un-contacted oil saturation as predicted in core flood. The findings of this study will help to understand WAG performance and design in highly heterogeneous reservoirs for field applications. Graphical abstract


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qiji Sun ◽  
Kesen Yang ◽  
Guomin Xu ◽  
Shunde Yin ◽  
Chunsheng Wang

An artificial sandstone core model of large well group of positive rhythmic heterogeneous reservoir was designed and made for the simulation of ASP flooding experiment in the moderate heterogeneous reservoir. The well layout of one injection and one production was employed for the core model, to simulate the influence of polymer preslugs with different viscosity on ASP flooding effect. The experimental results show that the injectability of the polymer preslug and the effect of relieving the conflict of remaining oil production in each layer are related to the viscosity of the system. In the heterogeneous core model with the coefficient of variation of 0.65, under the constraint of the same amount of polymer agent, the ASP flooding effect of the 0.075 PV, 60 mPa·s polymer preslug was better than that of the 0.093 PV, 40 mPa·s and 0.064 PV, 80 mPa·s polymer preslugs. The change in the viscosity of the polymer preslug did not enable the ASP system to effectively exploit the low-permeability layer though. As the viscosity increased, the pressure difference between injection and production increased; the remaining oil could be exploited effectively at the bottom of the high-permeability layer and the medium-permeability layer as well as the injection end of the medium-permeability layer. If the viscosity is too small, the high-permeability area cannot be effectively blocked by the injected chemical agent, and if the viscosity is too large, the injected chemical agent cannot produce good elastic displacement relationship, which will lead to ineffective chemical agent flow. Therefore, the polymer preslug viscosity of the ASP flooding system should be moderate, and cores with different heterogeneity should have a reasonable viscosity matching range.


Author(s):  
O.C. Valdiviezo-Mijangos ◽  
L.D. Jaimes-Tejeda ◽  
R. Nicolás-López ◽  
R. Rodríguez-Ramos ◽  
F.J. Sabina

Sign in / Sign up

Export Citation Format

Share Document