scholarly journals A Coupled Sharp-Interface Immersed Boundary-Finite-Element Method for Flow-Structure Interaction With Application to Human Phonation

2010 ◽  
Vol 132 (11) ◽  
Author(s):  
X. Zheng ◽  
Q. Xue ◽  
R. Mittal ◽  
S. Beilamowicz

A new flow-structure interaction method is presented, which couples a sharp-interface immersed boundary method flow solver with a finite-element method based solid dynamics solver. The coupled method provides robust and high-fidelity solution for complex flow-structure interaction (FSI) problems such as those involving three-dimensional flow and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the vocal folds during phonation. Both two- and three-dimensional models have been examined and qualitative, as well as quantitative comparisons, have been made with established results in order to validate the solver. The solver is used to study the onset of phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a three-dimensional model and results from these studies are also presented.

2018 ◽  
Vol 29 (04) ◽  
pp. 1850038 ◽  
Author(s):  
Chun-Lin Gong ◽  
Zhe Fang ◽  
Gang Chen

A numerical approach based on the immersed boundary (IB), lattice Boltzmann and nonlinear finite element method (FEM) is proposed to simulate hydrodynamic interactions of very flexible objects. In the present simulation framework, the motion of fluid is obtained by solving the discrete lattice Boltzmann equations on Eulerian grid, the behaviors of flexible objects are calculated through nonlinear dynamic finite element method, and the interactive forces between them are implicitly obtained using velocity correction IB method which satisfies the no-slip conditions well at the boundary points. The efficiency and accuracy of the proposed Immersed Boundary-Lattice Boltzmann-Finite Element method is first validated by a fluid–structure interaction (F-SI) benchmark case, in which a flexible filament flaps behind a cylinder in channel flow, then the nonlinear vibration mechanism of the cylinder-filament system is investigated by altering the Reynolds number of flow and the material properties of filament. The interactions between two tandem and side-by-side identical objects in a uniform flow are also investigated, and the in-phase and out-of-phase flapping behaviors are captured by the proposed method.


2010 ◽  
Vol 39 ◽  
pp. 550-554 ◽  
Author(s):  
Xin Fan ◽  
Mao Hui Pan ◽  
Cheng Song Zhang

Connecting rod fatigue in a certain type of diesel engine is analyzed by using finite element analysis method and the FEM software ANSYS. According the actual working conditions, the three-dimensional model with multi-body contact is established to simulate the contact between the connecting rod parts; By using APDL language programming, the work load on the connecting rod, calculated according all the link work loads, is applied to the connecting rod bearing and bushing through the oil film pressure distribution. By finite element method structural strength of the connecting rod was calculated, that can effectively guide the connecting rod design, which has been proved by practice.


Sign in / Sign up

Export Citation Format

Share Document