A filtration model for evaluating maximum penetration distance of bentonite grout through granular soils

2015 ◽  
Vol 65 ◽  
pp. 291-301 ◽  
Author(s):  
Jisuk Yoon ◽  
Chadi S. El Mohtar
Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 746
Author(s):  
Mahdi Ghadiri ◽  
Susan T.L. Harrison ◽  
Marijke A. Fagan-Endres

In heap (bio)leaching processes, a substantial fraction of the valuable mineral is positioned below the ore particle surface. X-ray micro-computed tomography (μCT) was used to quantify the effect of ore type and structure and operating temperature on the leaching of this mineral, to investigate the rate-controlling factors. Mini-leaching columns containing agglomerated chalcopyrite, pyrite, and malachite ores were scanned by X-ray μCT (13.40 µm resolution) at select time intervals. The leaching of a relatively porous malachite ore was reaction-controlled, with no leaching penetration limitation into the ore particles. For two less porous ore types, the structure and higher porosity of the agglomerate rim and conditions that resulted in the degradation of the full ore matrix structure were found to be the determining variables of the leaching extent and time. In the case of a chalcopyrite ore, an enhancement of copper recovery and sulphide mineral dissolution with increasing temperature was attributable to the increased leaching penetration distance and crack development in addition to thermodynamically expected increased leaching rate. Increasing temperature did not affect the maximum penetration distance for the waste rock containing pyrite, with no crack development observed. Overall increases in iron recovery were due to accelerated leaching rates, though diffusion or mineral access limitations were evident at a higher temperature.


2020 ◽  
Vol 37 (3) ◽  
pp. 943-954
Author(s):  
Manuel Pérez-Tello ◽  
María M. Salazar-Campoy ◽  
Óscar Rodríguez-Hoyos

2015 ◽  
Vol 52 (11) ◽  
pp. 1850-1860 ◽  
Author(s):  
Chadi S. El Mohtar ◽  
Jisuk Yoon ◽  
May El-Khattab

Permeation grouting using bentonite grouts is one of the effective methods to improve the engineering properties of granular soils. However, the low penetrability of bentonite grouts into soils limits their practical application in permeation grouting. This study presents a new approach to control the penetration length of bentonite grouts through granular soils using an ionic additive, sodium pyrophosphate (SPP). It is hypothesized that the chemical modification changes both rheological and physicochemical properties of the bentonite grout, and thus affects its penetration length through soils. The rheological properties (yield stress and apparent viscosity) of bentonite grouts with weight ratios (ratio of water to dry bentonite, W/B) of 19, 12.3, 9, and 7.3 were controlled by the addition of 1%–4% SPP by weight of dry bentonite. The bentonite grouts were also injected into sand columns prepared at various experimental conditions to evaluate the effect of each experimental parameter on their penetration lengths. The results show that the penetration length of bentonite grouts decreases with a decrease in W/B ratio and an increase in yield stress and apparent viscosity. Moreover, the penetration length increases with the increase of the normalized effective grain size and injection pressure, but the increase of fines content reduces the penetration length of the grouts. While the existing analytical equation produces good agreement with the measured penetration lengths for the grouts having high yield stress (>26 Pa), it significantly overestimates the penetration lengths of the SPP modified bentonite grouts due to filtration (especially, the grouts having low yield stress and low W/B ratios). Therefore, a new empirical correlation is proposed to predict the penetration length of the bentonite grouts based on filtration and rheological blocking.


2021 ◽  
Vol 95 ◽  
Author(s):  
R. Pervez ◽  
U. Rao

Abstract The legume pod-borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae) (LPB), is an important insect pest of pigeon pea. Chemical pesticides are generally employed to manage this pest, but because of the soil residue issues and other environmental hazards associated with their use, biopesticides are also in demand. Another benign alternative is to use entomopathogenic nematodes (EPNs) to manage this vital pest. In the present study, the infectivity of ten native EPNs was evaluated against LPB by assessing their penetration and production in the LPB. The effectiveness of the promising EPNs against second-, third- and fourth-instar LPB larvae was also studied. Heterorhabditis sp. (Indian Agricultural Research Institute-Entomopathogenic Nematodes Rashid Pervez (IARI-EPN RP) 06) and Oscheius sp. (IARI-EPN RP 08) were found to be most pathogenic to LPB, resulting in about 100% mortality within 72 h, followed by Steinernema sp. (IARI-EPN RP 03 and 09). Oscheius sp. (IARI-EPN RP 04) was found to be the least pathogenic to LPB larva with 67% mortality. Maximum penetration was exhibited by Heterorhabditis sp. (IARI-EPN RP 06) followed by Oscheius sp. (IARI-EPN RP 08), whereas the lowest rate of penetration was exhibited by Oscheius sp. (IARI-EPN RP 01). The highest rate of production was observed with Oscheius sp. (IARI-EPN RP 08), followed by Oscheius sp. (IARI-EPN RP 04 and 10). Among the tested instars of the LPB larvae, second-instar larvae were more susceptible to EPNs, followed by third- and fourth-instar larvae. The results indicate that Heterorhabditis sp. (IARI-EPN RP 06) and Oscheius sp. (IARI-EPN RP 08) have a good potential to the manage LPB.


Sign in / Sign up

Export Citation Format

Share Document