The critical state behaviour of granular material in triaxial and direct simple shear condition: A DEM approach

2021 ◽  
Vol 138 ◽  
pp. 104325
Author(s):  
Hoang Bao Khoi Nguyen ◽  
Md Mizanur Rahman ◽  
Andy Fourie
2021 ◽  
Vol 147 (3) ◽  
pp. 04020177
Author(s):  
Daniela Dominica Porcino ◽  
Theodoros Triantafyllidis ◽  
Torsten Wichtmann ◽  
Giuseppe Tomasello

2020 ◽  
Vol 44 (5) ◽  
pp. 20190471
Author(s):  
M. Konstadinou ◽  
A. Bezuijen ◽  
G. Greeuw ◽  
C. Zwanenburg ◽  
H. M. Van Essen ◽  
...  

2021 ◽  
Vol 45 (2) ◽  
pp. 20210125
Author(s):  
Jiarui Chen ◽  
Scott M. Olson ◽  
Soham Banerjee ◽  
Mandar M. Dewoolkar ◽  
Yves Dubief

2021 ◽  
Vol 23 (4) ◽  
Author(s):  
Min Zhang ◽  
Yunming Yang ◽  
Hanwen Zhang ◽  
Nick Thom ◽  
Hai-Sui Yu

Author(s):  
Heather J. Miller ◽  
Pedro de Alba ◽  
Kenneth C. Baldwin

A testing system has been developed to study the behavior of saturated sand under low-level cyclic shearing strains. The system has been used to determine threshold shear strain levels for fabric destruction in sand aged for different time periods. The system includes a special soil chamber and a direct simple shear (DSS) machine. To impose very small shearing strains, the DSS machine was designed to apply and measure horizontal deformations as small as 0.0005 mm (2 × 10−5 inches). Data obtained to date support the results of previous investigators who performed triaxial tests on freshly deposited samples, indicating a threshold cyclic shear strain level of approximately 0.01 percent. At strains in excess of those levels, destruction of the sand fabric occurred, as evidenced by a reduction in shear modulus at low strain levels. Subsequent modest increases in shear modulus were observed after the specimens were allowed to recover for 24 hours and then tested again. During the recovery period, drainage valves were left open to allow for dissipation of excess pore pressures and for potential consolidation during the short aging period. The DSS system was found to work well for low strain measurements. Furthermore, since shear strains are measured directly under DSS conditions (as opposed to triaxial conditions), the DSS system shows much promise as a device for studying parameters that may influence threshold shear strain levels and fabric evolution and destruction in sands.


Sign in / Sign up

Export Citation Format

Share Document