triaxial loading
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 65)

H-INDEX

21
(FIVE YEARS 7)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Zhaoying Chen ◽  
Guofu Li ◽  
Yi Wang ◽  
Zemin Li ◽  
Mingbo Chi ◽  
...  

Underground coal mining of CH4 gas-rich tectonic coal seams often induces methane outburst disasters. Investigating gas permeability evolution in pores of the tectonic coal is vital to understanding the mechanism of gas outburst disasters. In this study, the triaxial loading–unloading stresses induced gas permeability evolutions in the briquette tectonic coal samples, which were studied by employing the triaxial-loading–gas-seepage test system. Specifically, effects of loading paths and initial gas pressures on the gas permeability of coal samples were analyzed. The results showed the following: (1) The gas permeability evolution of coal samples was correlated with the volumetric strain change during triaxial compression scenarios. In the initial compaction and elastic deformation stages, pores and cracks in the coal were compacted, resulting in a reduction in gas permeability in the coal body. However, after the yield stage, the gas permeability could be enhanced due to sample failure. (2) The gas permeability of the tectonic coal decreased as a negative exponential function with the increase in initial gas pressure, in which the permeability was decreased by 67.32% as the initial gas pressure increased from 0.3 MPa to 1.5 MPa. (3) Coal samples underwent a period of strain development before they began to fail during confining pressure releasing. After the stress releasing-induced yield stage, the coal sample was deformed and cracked, resulting in a quickly increase in gas permeability. With a further releasing process, failure of the sample occurred, and thus induced rapidly increasing gas permeability. These obtained results could provide foundations for gas outburst prevention in mining gas-rich tectonic coal seams.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hang Yu ◽  
Xue-mei Shen ◽  
Yu-chen Ye ◽  
Jie Yang ◽  
Chen-hui Zhu

The dilatancy equation, which describes the plastic strain increment ratio and its dependence on the stress state, is an important component of the elastoplastic constitutive model of geotechnical materials. In order to reveal their differences of the dilatancy value determined by the total volume strain increment ratio and the real value of lean cemented sand and gravel (LCSG) materials, in this study, a series of triaxial compression tests, equiaxial loading and unloading tests, and triaxial loading and unloading tests are conducted under different cement contents and confining pressures. The results reveal that hysteretic loops appear in the stress–strain curves of equiaxial loading and unloading tests, and triaxial loading and unloading tests and that the elastic strain is an important component of the total strain. The hysteretic loop size increases with an increase in the stress level or consolidation stress, whereas the shape remains unchanged. Furthermore, with an increase in the cement content, the dilatancy value determined by the total volume strain increment ratio becomes smaller than that determined by the plastic strain increment ratio, and the influence of the elastic deformation cannot be ignored. Thus, in practical engineering scenarios, especially in the calculation of LCSG dam structures, the dilatancy equation of LCSG materials should be expressed by the plastic strain increment ratio, rather than the total volume strain increment rati.


2021 ◽  
Vol 14 (24) ◽  
Author(s):  
Guosheng Yang ◽  
Shuangying Zuo ◽  
Daoyong Wu ◽  
Yinting Huang ◽  
Yabin Zhang ◽  
...  

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Tianbai Zhou ◽  
Yueping Qin ◽  
Jian Cheng ◽  
Xiaoyu Zhang ◽  
Qiufeng Ma

Conventional triaxial loading and unloading tests were carried out on sandstone samples in the Zigong area, of Sichuan Province, China. The changes in the elastic modulus of the unloading curves under different confining pressures were calculated, and the evolution law of the nonlinear properties of rock was analyzed. The results show that the rock is subjected to nonlinear damage during initial compaction, the elastic phase, destruction, and postpeak unloading. Moreover, the nonlinear behaviors of rock are restrained by the confining pressures. On this basis, a nonlinear stress-strain relationship affected by the average stress is proposed to describe nonlinear behaviors in the initial compaction stage. According to the test data, the evolution laws of various energies inside the rock during loading and unloading cycles are obtained. The results show that the external work is transformed into elastic energy and damage dissipated energy. Based on the energy analysis, the energy balance equation is established according to the law of energy conservation. By deriving the energy balance equation, the damage evolution equation of sandstone under triaxial loading is solved to establish a continuous constitutive model. The calculation results of the model are compared with the test results from two aspects of loading and postpeak unloading. The comparison results show that the proposed model, which reflects the whole stress-strain process and nonlinear properties of rock, could also describe the stress-strain relationship at the postpeak unloading stage to some extent.


2021 ◽  
pp. 1-1
Author(s):  
Buddhima Indraratna ◽  
Mandeep Singh ◽  
Thanh Trung Nguyen ◽  
Serge Leroueil ◽  
Aruni Abeywickrama ◽  
...  

2021 ◽  
Vol 861 (2) ◽  
pp. 022066
Author(s):  
Lehua Wang ◽  
Guangqiang Feng ◽  
Bingyi Zhang ◽  
Weizheng Shi ◽  
Can Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document