scholarly journals Calibrating a fiber–matrix interface failure model to single fiber push-out tests and numerical simulations

Author(s):  
Benedikt Rohrmüller ◽  
Peter Gumbsch ◽  
Jörg Hohe
2005 ◽  
Vol 12 (7) ◽  
pp. 603-616 ◽  
Author(s):  
Ken Goto ◽  
Itaru Kawahara ◽  
Hiroshi Hatta ◽  
Yasuo Kogo ◽  
Ichiro Shiota

1994 ◽  
Vol 365 ◽  
Author(s):  
Hassan Mahfuz ◽  
A.K.M. Ahsan Mian ◽  
Uday K. Vaidya ◽  
Timothy Brown ◽  
Shaik Jeelani

ABSTRACTA 3D-unit cell for 0/90 laminated composites has been developed to predict the composite behavior under longitudinal tensile loading condition. 3D contact element has been used to model the fiber matrix interface. Two interface conditions, namely, infinitely strong and weakly bonded, are considered in the analysis. Both large displacement and plastic strain behavior for the matrix are considered to account for the geometric and material non-linearities. Investigations were carried out at three temperatures to compare the composite response obtained from mechanical tests at those temperatures. Stress-strain behavior and the local stress distributions at the fiber as well as at the matrix are presented, and their effects on the failure of the interface are discussed in the paper. The material under investigation was SiCf/Si3N4.


2020 ◽  
Vol 4 (2) ◽  
pp. 58 ◽  
Author(s):  
Daljeet K. Singh ◽  
Amol Vaidya ◽  
Vinoy Thomas ◽  
Merlin Theodore ◽  
Surbhi Kore ◽  
...  

Polymer composites are used in numerous industries due to their high specific strength and high specific stiffness. Composites have markedly different properties than both the reinforcement and the matrix. Of the several factors that govern the final properties of the composite, the interface is an important factor that influences the stress transfer between the fiber and matrix. The present study is an effort to characterize and model the fiber-matrix interface in polymer matrix composites. Finite element models were developed to study the interfacial behavior during pull-out of a single fiber in continuous fiber-reinforced polymer composites. A three-dimensional (3D) unit-cell cohesive damage model (CDM) for the fiber/matrix interface debonding was employed to investigate the effect of interface/sizing coverage on the fiber. Furthermore, a two-dimensional (2D) axisymmetric model was used to (a) analyze the sensitivity of interface stiffness, interface strength, friction coefficient, and fiber length via a parametric study; and (b) study the shear stress distribution across the fiber-interface-matrix zone. It was determined that the force required to debond a single fiber from the matrix is three times higher if there is adequate distribution of the sizing on the fiber. The parametric study indicated that cohesive strength was the most influential factor in debonding. Moreover, the stress distribution model showed the debonding mechanism of the interface. It was observed that the interface debonded first from the matrix and remained in contact with the fiber even when the fiber was completely pulled out.


Sign in / Sign up

Export Citation Format

Share Document