A new method for study of the fiber-matrix interface in composites: single fiber pull-out from a microcomposite

1991 ◽  
Vol 5 (9) ◽  
pp. 741-756 ◽  
Author(s):  
Yiping Qiu ◽  
Peter Schwartz
Scanning ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Enze Jin ◽  
Denghao Ma ◽  
Zeshuai Yuan ◽  
Wenting Sun ◽  
Hao Wang ◽  
...  

Here, we show that when the oxidation treatment temperature exceeded 600°C, the tensile strength of SiC/SiC begins to decrease. Oxidation leads to the damages on the PyC fiber/matrix interface, which is replaced by SiO2 at higher temperature. The fracture mode converts from fiber pull-out to fiber-break as the fiber/matrix interface is filled with SiO2. Oxidation time also plays an important role in affecting the tensile strength of SiC/SiC. The tensile modulus decreases with temperature from RT to 800°C, then increases above 800°C due to the decomposition of remaining CSi x O y and crystallization of the SiC matrix. A special surface densification treatment performed in this study is confirmed to be an effective approach to reduce the oxidation damages and improve the tensile strength of SiC/SiC after oxidation.


Author(s):  
K. L. More ◽  
E. Lara-Curzio ◽  
R. A. Lowden

The effect of interfacial properties in fiber-reinforced ceramic matrix composites is critical to the overall mechanical behavior of the composite material. The creation of a relatively weak fiber/matrix interface allows for the beneficial actions of debonding and fiber pull-out to occur, thus improving the fracture toughness and, in many cases, the ultimate strength of the composite. To date, the best room temperature interfacial properties have been achieved by coating the fibers with either carbon or boron nitride. There are several factors which contribute to the interfacial properties of a composite, including the residual stress (clamping stress) present at the fiber/matrix interface, which is a result of differences in thermal expansion, and the fiber surface roughness. In this study, the surfaces of several ceramic fibers have been characterized qualitatively using a Hitachi S-4500 FEG SEM operated at low voltages and quantitatively using a Topometrix atomic force microscope (AFM). This study is part of an overall program relating fiber surface roughness to the interfacial shear stress.


2012 ◽  
Vol 498 ◽  
pp. 210-218 ◽  
Author(s):  
Bouchra Hassoune-Rhabbour ◽  
Laurence Poussines ◽  
Valérie Nassiet

There are several models on the relationship structures and properties of the composite fiber / matrix interface [1]. Including literature proposes the development of micromechanical tests suitable for assessing the shear strength of the interface fiber / polymer matrix. The first test which allowed to characterize the fiber / matrix interface is the pull-out test developed by Broutman [2]. It consists in extracting the fiber from the matrix that can be in block form, gout or disk of resin. To reduce the variation in results due to the geometries used, it was agreed to use a drop of resin with small dimensions. The test is to characterize the fiber / matrix interface of natural thermosetting or thermoplastic by determining the shear stress.


1988 ◽  
Vol 120 ◽  
Author(s):  
M. D. Thouless ◽  
O. Sbaizero ◽  
E. Bischoff ◽  
E. Y. Luh

AbstractThe toughness of ceramic-matrix composites is strongly influenced by fiber pull-out. The extent of the pull-out depends upon the properties of the fiber and the fiber/matrix interface. Samples of a SiC/LAS composite were subjected to different heat treatments in order to systematically vary these properties. The predicted distribution of the fiber pull-out lengths was calculated by combining a shear lag analysis with Weibull statistics for the fiber strengths. Comparison of the analysis with experiments and microstructural observations contribute to an understanding of the role of the fiber/matrix interface upon the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document