Size-dependent static and dynamic responses of embedded double-layered graphene sheets under longitudinal magnetic field with arbitrary boundary conditions

2018 ◽  
Vol 142 ◽  
pp. 117-130 ◽  
Author(s):  
M.H. Jalaei ◽  
A. Ghorbanpour Arani
2016 ◽  
Vol 2016 ◽  
pp. 1-30 ◽  
Author(s):  
Dongyan Shi ◽  
Yunke Zhao ◽  
Qingshan Wang ◽  
Xiaoyan Teng ◽  
Fuzhen Pang

This paper presents free vibration analysis of open and closed shells with arbitrary boundary conditions using a spectro-geometric-Ritz method. In this method, regardless of the boundary conditions, each of the displacement components of open and closed shells is represented simultaneously as a standard Fourier cosine series and several auxiliary functions. The auxiliary functions are introduced to accelerate the convergence of the series expansion and eliminate all the relevant discontinuities with the displacement and its derivatives at the boundaries. The boundary conditions are modeled using the spring stiffness technique. All the expansion coefficients are treated equally and independently as the generalized coordinates and determined using Rayleigh-Ritz method. By using this method, a unified vibration analysis model for the open and closed shells with arbitrary boundary conditions can be established without the need of changing either the equations of motion or the expression of the displacement components. The reliability and accuracy of the proposed method are validated with the FEM results and those from the literature.


2021 ◽  
pp. 109963622110204
Author(s):  
Xue-Yang Miao ◽  
Chao-Feng Li ◽  
Yu-Lin Jiang ◽  
Zi-Xuan Zhang

In this paper, a unified method is developed to analyze free vibrations of the three-layer functionally graded cylindrical shell with non-uniform thickness. The middle layer is composed of two-dimensional functionally gradient materials (2D-FGMs), whose thickness is set as a function of smooth continuity. Four sets of artificial springs are assigned at the ends of the shells to satisfy the arbitrary boundary conditions. The Sanders’ shell theory is used to obtain the strain and curvature-displacement relations. Furthermore, the Chebyshev polynomials are selected as the admissible function to improve computational efficiency, and the equation of motion is derived by the Rayleigh–Ritz method. The effects of spring stiffness, volume fraction indexes, configuration on of shell, and the change in thickness of the middle layer on the modal characteristics of the new structural shell are also analyzed.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Huimin Liu ◽  
Fanming Liu ◽  
Xin Jing ◽  
Zhenpeng Wang ◽  
Linlin Xia

This paper presents the first known vibration characteristic of rectangular thick plates on Pasternak foundation with arbitrary boundary conditions on the basis of the three-dimensional elasticity theory. The arbitrary boundary conditions are obtained by laying out three types of linear springs on all edges. The modified Fourier series are chosen as the basis functions of the admissible function of the thick plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges. The exact solution is obtained based on the Rayleigh–Ritz procedure by the energy functions of the thick plate. The excellent accuracy and reliability of current solutions are demonstrated by numerical examples and comparisons with the results available in the literature. In addition, the influence of the foundation coefficients as well as the boundary restraint parameters is also analyzed, which can serve as the benchmark data for the future research technique.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
K. Wu ◽  
W. D. Zhu

A new global spatial discretization method (NGSDM) is developed to accurately calculate natural frequencies and dynamic responses of two-dimensional (2D) continuous systems such as membranes and Kirchhoff plates. The transverse displacement of a 2D continuous system is separated into a 2D internal term and a 2D boundary-induced term; the latter is interpolated from one-dimensional (1D) boundary functions that are further divided into 1D internal terms and 1D boundary-induced terms. The 2D and 1D internal terms are chosen to satisfy prescribed boundary conditions, and the 2D and 1D boundary-induced terms use additional degrees-of-freedom (DOFs) at boundaries to ensure satisfaction of all the boundary conditions. A general formulation of the method that can achieve uniform convergence is established for a 2D continuous system with an arbitrary domain shape and arbitrary boundary conditions, and it is elaborated in detail for a general rectangular Kirchhoff plate. An example of a rectangular Kirchhoff plate that has three simply supported boundaries and one free boundary with an attached Euler–Bernoulli beam is investigated using the developed method and results are compared with those from other global and local spatial discretization methods. Advantages of the new method over local spatial discretization methods are much fewer DOFs and much less computational effort, and those over the assumed modes method (AMM) are better numerical property, a faster calculation speed, and much higher accuracy in calculation of bending moments and transverse shearing forces that are related to high-order spatial derivatives of the displacement of the plate with an edge beam.


Sign in / Sign up

Export Citation Format

Share Document