scholarly journals Closed-form solutions for the coupled deflection of anisotropic Euler–Bernoulli composite beams with arbitrary boundary conditions

2021 ◽  
Vol 161 ◽  
pp. 107479 ◽  
Author(s):  
Pedram Khaneh Masjedi ◽  
Olga Doeva ◽  
Paul M. Weaver
Author(s):  
Gen Li ◽  
Yufeng Xing ◽  
Zekun Wang

For rectangular thick plates with non-Levy boundary conditions, it is important to explore analytical free vibration solutions because the classical inverse and semi-inverse exact solution methods are not applicable to this category of problems. This work is to develop an extended separation-of-variable (SOV) method to find closed-form analytical solutions for the free vibration of rectangular Mindlin plates with arbitrary homogeneous boundary conditions. In the extended SOV method, characteristic differential equations and boundary conditions in two directions are obtained by employing the Rayleigh principle and the assumption that the mode functions are in the SOV form, and two transcendental eigenvalue equations are achieved through boundary conditions. But these two eigenvalue equations cannot be solved simultaneously since there are two equations and only the natural frequency is the unknown variable. Considering this, the second assumption in this method is that the natural frequencies corresponding to two-direction mode functions are independent of each other in the mathematical sense, thus there are two unknowns in two transcendental eigenvalue equations, and the closed-form solutions for plates with arbitrary boundary conditions can be obtained non-iteratively. From the physical sense, the natural frequencies pertaining to different direction mode functions should be the same, and this conclusion is validated analytically and numerically. The present natural frequencies and mode shapes agree well with those obtained by other analytical and numerical methods. Especially, for the plates with at least two opposite sides simply supported, the present solutions are exact.


2016 ◽  
Vol 2016 ◽  
pp. 1-30 ◽  
Author(s):  
Dongyan Shi ◽  
Yunke Zhao ◽  
Qingshan Wang ◽  
Xiaoyan Teng ◽  
Fuzhen Pang

This paper presents free vibration analysis of open and closed shells with arbitrary boundary conditions using a spectro-geometric-Ritz method. In this method, regardless of the boundary conditions, each of the displacement components of open and closed shells is represented simultaneously as a standard Fourier cosine series and several auxiliary functions. The auxiliary functions are introduced to accelerate the convergence of the series expansion and eliminate all the relevant discontinuities with the displacement and its derivatives at the boundaries. The boundary conditions are modeled using the spring stiffness technique. All the expansion coefficients are treated equally and independently as the generalized coordinates and determined using Rayleigh-Ritz method. By using this method, a unified vibration analysis model for the open and closed shells with arbitrary boundary conditions can be established without the need of changing either the equations of motion or the expression of the displacement components. The reliability and accuracy of the proposed method are validated with the FEM results and those from the literature.


2021 ◽  
pp. 109963622110204
Author(s):  
Xue-Yang Miao ◽  
Chao-Feng Li ◽  
Yu-Lin Jiang ◽  
Zi-Xuan Zhang

In this paper, a unified method is developed to analyze free vibrations of the three-layer functionally graded cylindrical shell with non-uniform thickness. The middle layer is composed of two-dimensional functionally gradient materials (2D-FGMs), whose thickness is set as a function of smooth continuity. Four sets of artificial springs are assigned at the ends of the shells to satisfy the arbitrary boundary conditions. The Sanders’ shell theory is used to obtain the strain and curvature-displacement relations. Furthermore, the Chebyshev polynomials are selected as the admissible function to improve computational efficiency, and the equation of motion is derived by the Rayleigh–Ritz method. The effects of spring stiffness, volume fraction indexes, configuration on of shell, and the change in thickness of the middle layer on the modal characteristics of the new structural shell are also analyzed.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Huimin Liu ◽  
Fanming Liu ◽  
Xin Jing ◽  
Zhenpeng Wang ◽  
Linlin Xia

This paper presents the first known vibration characteristic of rectangular thick plates on Pasternak foundation with arbitrary boundary conditions on the basis of the three-dimensional elasticity theory. The arbitrary boundary conditions are obtained by laying out three types of linear springs on all edges. The modified Fourier series are chosen as the basis functions of the admissible function of the thick plates to eliminate all the relevant discontinuities of the displacements and their derivatives at the edges. The exact solution is obtained based on the Rayleigh–Ritz procedure by the energy functions of the thick plate. The excellent accuracy and reliability of current solutions are demonstrated by numerical examples and comparisons with the results available in the literature. In addition, the influence of the foundation coefficients as well as the boundary restraint parameters is also analyzed, which can serve as the benchmark data for the future research technique.


Sign in / Sign up

Export Citation Format

Share Document