Interfacial effects of nitrogen-doped carbon nanotubes on mechanical and thermal properties of nanocomposites: A molecular dynamics study

2019 ◽  
Vol 167 ◽  
pp. 615-620 ◽  
Author(s):  
Hoi Kil Choi ◽  
Hana Jung ◽  
Yuna Oh ◽  
Hyunkee Hong ◽  
Jaesang Yu ◽  
...  
Author(s):  
Shigeo Maruyama

Carbon nanotubes and graphene are extra-ordinal material with remarkable electrical, optical, mechanical and thermal properties. Films of vertically aligned (VA-) SWNTs and horizontally aligned (HA-) SWNTs are synthesized on quartz and crystal quartz substrates, respectively. These aligned film should inherit the remarkable properties of SWNTs. The recent progress in growth control and characterization techniques will be discussed. The CVD growth mechanism of VA-SWNTs is discussed based on the in-situ growth monitoring by laser absorption during CVD. For the precisely patterned growth of SWNTs, we recently propose a surface-energy-difference driven selective deposition of catalyst for localized growth of SWNTs. For a self assembled monolayer (SAM) patterned Si surface, catalyst particles deposit and SWNTs grow only on the hydrophilic regions. The proposed all-liquid-based approach possesses significant advantages in scalability and resolution over state-to-the-art techniques, which we believe can greatly advance the fabrication of nano-devices using high-quality as-grown SWNTs. The optical characterization of the VA-SWNT film using polarized absorption, polarized Raman, and photoluminescence spectroscopy will be discussed. The extremely high and peculiar thermal conductivity of single-walled carbon nanotubes has been explored by non-equilibrium molecular dynamics simulation approaches. The thermal properties of the vertically aligned film and composite materials are studied by several experimental techniques and Monte Carlo simulations based on molecular dynamics inputs of thermal conductivity and thermal boundary resistance. Current understanding of thermal properties of the film is discussed.


2006 ◽  
Vol 14 (2-3) ◽  
pp. 151-164 ◽  
Author(s):  
A. V. Okotrub ◽  
L. G. Bulusheva ◽  
V. V. Belavin ◽  
A. G. Kudashov ◽  
A. V. Gusel'nikov ◽  
...  

Carbon ◽  
2013 ◽  
Vol 61 ◽  
pp. 647-649 ◽  
Author(s):  
Qingze Jiao ◽  
Liang Hao ◽  
Qingyan Shao ◽  
Yun Zhao

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1018
Author(s):  
Vadahanambi Sridhar ◽  
Inwon Lee ◽  
Hyun Park

Metal organic framework (MOF)-derived carbon nanostructures (MDC) synthesized by either calcinations or carbonization or pyrolysis are emerging as attractive materials for a wide range of applications like batteries, super-capacitors, sensors, water treatment, etc. But the process of transformation of MOFs into MDCs is time-consuming, with reactions requiring inert atmospheres and reaction time typically running into hours. In this manuscript, we report the transformation of 1,4-diazabicyclo[2.2.2]octane, (DABCO)-based MOFs into iron nitride nanoparticles embedded in nitrogen-doped carbon nanotubes by simple, fast and facile microwave pyrolysis. By using graphene oxide and carbon fiber as microwave susceptible surfaces, three-dimensional nitrogen-doped carbon nanotubes vertically grown on reduced graphene oxide (MDNCNT@rGO) and carbon fibers (MDCNT@CF), respectively, were obtained, whose utility as anode material in sodium-ion batteries (MDNCNT@rGO) and for EMI (electromagnetic interference) shielding material (MDCNT@CF) is reported.


2011 ◽  
Vol 47 (2) ◽  
pp. 668-670 ◽  
Author(s):  
Jing Zhang ◽  
Jianping Lei ◽  
Rong Pan ◽  
Chuan Leng ◽  
Zheng Hu ◽  
...  

2017 ◽  
Vol 545 ◽  
pp. 54-63 ◽  
Author(s):  
Baoqiang Dong ◽  
Yuhang Li ◽  
Xiaomei Ning ◽  
Hongjuan Wang ◽  
Hao Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document