Flexural creep behavior of web reinforced GFRP-balsa sandwich beams: Experimental investigation and modeling

2020 ◽  
Vol 196 ◽  
pp. 108150
Author(s):  
Xiaolong Li ◽  
Weiqing Liu ◽  
Hai Fang ◽  
Ruili Huo ◽  
Peng Wu
2019 ◽  
Vol 224 ◽  
pp. 111009 ◽  
Author(s):  
Xiaolong Li ◽  
Weiqing Liu ◽  
Hai Fang ◽  
Ruili Huo ◽  
Peng Wu

Author(s):  
Anaïs Farrugia ◽  
Charles Winkelmann ◽  
Valeria La Saponara ◽  
Jeong Sik Kim ◽  
Anastasia H. Muliana

In service, composite structures present the unique challenge of damage detection and repair. Piezoelectric ceramic, such as lead zirconate titanate (PZT), is often used for detecting damage in composites. This paper investigates the effect of embedded PZT crystals on the overall creep behavior of sandwich beams comprising of glass fiber reinforced polymer laminated skins and polymer foam core, which could potentially be used as a damage-detecting smart structure. Uniaxial quasi-static and creep tests were performed on the glass/epoxy laminated composites having several fiber orientations, 0 deg, 45 deg, and 90 deg, to calibrate the elastic and viscoelastic properties of the fibers and matrix. Three-point bending creep tests at elevated temperature (80°C) were then carried out for a number of control sandwich beams (no PZT crystal) and conditioned sandwich beams (with PZT crystals embedded in the center of one facesheet). Lateral deflection of the sandwich beams was monitored for more than 60 h. The model presented in this paper is composed by two parts: (a) a simplified micromechanical model of unidirectional fiber reinforced composites used to obtain effective properties and overall creep response of the laminated skins and (b) a finite element method to simulate the overall creep behavior of the sandwich beams with embedded PZT crystals. The simplified micromechanical model is implemented in the material integration points within the laminated skin elements. Fibers are modeled as linear elastic, while a linearized viscoelastic material model is used for the epoxy matrix and foam core. Numerical results on the creep deflection of the smart sandwich beams show good correlations with the experimental creep deflection at 80°C, thus proving that this model, although currently based on material properties reported at room temperature, is promising to obtain a reasonable prediction for the creep of a smart sandwich structure at high temperatures.


2017 ◽  
Vol 122 ◽  
pp. 136-144 ◽  
Author(s):  
Valentino Paolo Berardi ◽  
Michele Perrella ◽  
Luciano Feo ◽  
Gabriele Cricrì

Author(s):  
M. Johannes ◽  
J. Jakobsen ◽  
V. Skvortsov ◽  
E. Bozhevolnaya ◽  
O. T. Thomsen

2017 ◽  
Vol 143 (10) ◽  
pp. 04017139
Author(s):  
Luís Valarinho ◽  
João R. Correia ◽  
Mário Garrido ◽  
Mário Sá ◽  
Fernando A. Branco

1986 ◽  
Vol 22 (3) ◽  
pp. 193-201 ◽  
Author(s):  
A. D'amore ◽  
L. Nicolais ◽  
M. Narkis

Sign in / Sign up

Export Citation Format

Share Document