scholarly journals Stress concentrations in an impregnated fibre bundle with random fibre packing

2013 ◽  
Vol 74 ◽  
pp. 113-120 ◽  
Author(s):  
Y. Swolfs ◽  
L. Gorbatikh ◽  
V. Romanov ◽  
S. Orlova ◽  
S.V. Lomov ◽  
...  
2016 ◽  
Vol 36 (5) ◽  
pp. 323-337 ◽  
Author(s):  
Li Zhang ◽  
Shufeng Zhang ◽  
Yuanxiang Jiang ◽  
Junyong Tao ◽  
Xun Chen

A critical limitation of fibre reinforced plastic is its large variability on mechanical performance, especially the longitudinal compressive strength. The influence of fibre random packing and waviness on the compressive strength of UD fibre reinforced plastic is studied in this paper. Three-dimensional geometrically non-linear finite element model is constructed to investigate the compressive behaviour, and an improved approach named Latin hypercube sampling based on random sequential expansion is proposed to generate random fibre distribution across the cross-section. Latin hypercube sampling based on random sequential expansion provides high computation efficiency and good distribution characteristics in comparison to previously proposed methods. Fibre waviness defect with different misalignment angles is also incorporated in the finite element model. It is shown that random fibre packing tends to result in a stochastic detriment of fibre reinforced plastic compressive strength in comparison with uniform fibre packing condition, and the stochastic variation of compressive strength tends to follow normal or lognormal distribution.


Author(s):  
J. Temple Black

There are two types of edge defects common to glass knives as typically prepared for microtomy purposes: 1) striations and 2) edge chipping. The former is a function of the free breaking process while edge chipping results from usage or bumping of the edge. Because glass has no well defined planes in its structure, it should be highly resistant to plastic deformation of any sort, including tensile loading. In practice, prevention of microscopic surface flaws is impossible. The surface flaws produce stress concentrations so that tensile strengths in glass are typically 10-20 kpsi and vary only slightly with composition. If glass can be kept in compression, wherein failure is literally unknown (1), it will remain intact for long periods of time. Forces acting on the tool in microtomy produce a resultant force that acts to keep the edge in compression.


Author(s):  
J. Temple Black

In ultramicrotomy, the two basic tool materials are glass and diamond. Glass because of its low cost and ease of manufacture of the knife itself is still widely used despite the superiority of diamond knives in many applications. Both kinds of knives produce plastic deformation in the microtomed section due to the nature of the cutting process and microscopic chips in the edge of the knife. Because glass has no well defined slip planes in its structure (it's an amorphous material), it is very strong and essentially never fails in compression. However, surface flaws produce stress concentrations which reduce the strength of glass to 10,000 to 20,000 psi from its theoretical or flaw free values of 1 to 2 million psi. While the microchips in the edge of the glass or diamond knife are generally too small to be observed in the SEM, the second common type of defect can be identified. This is the striations (also termed the check marks or feathers) which are always present over the entire edge of a glass knife regardless of whether or not they are visable under optical inspection. These steps in the cutting edge can be observed in the SEM by proper preparation of carefully broken knives and orientation of the knife, with respect to the scanning beam.


Author(s):  
A. Cziráki ◽  
E. Ková-csetényi ◽  
T. Torma ◽  
T. Turmezey

It is known that the formation of cavities during superplastic deformation can be correlated with the development of stress concentrations at irregularities along grain boundaries such as particles, ledges and triple points. In commercial aluminium alloys Al-Fe-Si particles or other coarse constituents may play an important role in cavity formation.Cavity formation during superplastic deformation was studied by optical metallography and transmission scanning electron microscopic investigations on Al-Mg-Si and Al-Mg-Mn alloys. The structure of particles was characterized by selected area diffraction and X-ray micro analysis. The volume fraction of “voids” was determined on mechanically polished surface.It was found by electron microscopy that strongly deformed regions are formed during superplastic forming at grain boundaries and around coarse particles.According to electron diffraction measurements these areas consist of small micro crystallized regions. See Fig.l.Comparing the volume fraction and morphology of cavities found by optical microscopy a good correlation was established between that of micro crystalline regions.


2015 ◽  
Vol 9 (1) ◽  
pp. 59-87 ◽  
Author(s):  
Martin Calamari

In recent years, the ideas of the mathematician Bernhard Riemann (1826–66) have come to the fore as one of Deleuze's principal sources of inspiration in regard to his engagements with mathematics, and the history of mathematics. Nevertheless, some relevant aspects and implications of Deleuze's philosophical reception and appropriation of Riemann's thought remain unexplored. In the first part of the paper I will begin by reconsidering the first explicit mention of Riemann in Deleuze's work, namely, in the second chapter of Bergsonism (1966). In this context, as I intend to show first, Deleuze's synthesis of some key features of the Riemannian theory of multiplicities (manifolds) is entirely dependent, both textually and conceptually, on his reading of another prominent figure in the history of mathematics: Hermann Weyl (1885–1955). This aspect has been largely underestimated, if not entirely neglected. However, as I attempt to bring out in the second part of the paper, reframing the understanding of Deleuze's philosophical engagement with Riemann's mathematics through the Riemann–Weyl conjunction can allow us to disclose some unexplored aspects of Deleuze's further elaboration of his theory of multiplicities (rhizomatic multiplicities, smooth spaces) and profound confrontation with contemporary science (fibre bundle topology and gauge field theory). This finally permits delineation of a correlation between Deleuze's plane of immanence and the contemporary physico-mathematical space of fundamental interactions.


2013 ◽  
Vol 41 (2) ◽  
pp. 127-151
Author(s):  
Rudolf F. Bauer

ABSTRACT The benefits of a tire's equilibrium profile have been suggested by several authors in the published literature, and mathematical procedures were developed that represented well the behavior of bias ply tires. However, for modern belted radial ply tires, and particularly those with a lower aspect ratio, the tire constructions are much more complicated and pose new problems for a mathematical analysis. Solutions to these problems are presented in this paper, and for a modern radial touring tire the equilibrium profile was calculated together with the mold profile to produce such tires. Some construction modifications were then applied to these tires to render their profiles “nonequilibrium.” Finite element methods were used to analyze for stress concentrations and deformations within all tires that did or did not conform to equilibrium profiles. Finally, tires were built and tested to verify the predictions of these analyses. From the analysis of internal stresses and deformations on inflation and loading and from the actual tire tests, the superior durability of tires with an equilibrium profile was established, and hence it is concluded that an equilibrium profile is a beneficial property of modern belted radial ply tires.


2019 ◽  
Vol 485 (2) ◽  
pp. 162-165
Author(s):  
V. A. Babeshko ◽  
O. M. Babeshko ◽  
O. V. Evdokimova

The distinctions in the description of the conditions of cracking of materials are revealed. For Griffith–Irwin cracks, fracture is determined by the magnitude of the stress-intensity factor at the crack tip; in the case of the new type of cracks, fracture occurs due to an increase in the stress concentrations up to singular concentrations.


1978 ◽  
Vol 14 (11) ◽  
pp. 347 ◽  
Author(s):  
H.A. Aulich ◽  
J.G. Grabmaier ◽  
K.H. Eisenrith

Sign in / Sign up

Export Citation Format

Share Document