Post-buckling analysis of functionally graded rectangular plates

2007 ◽  
Vol 81 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Tsung-Lin Wu ◽  
K.K. Shukla ◽  
Jin H. Huang
2010 ◽  
Vol 123-125 ◽  
pp. 280-283
Author(s):  
Chang Yull Lee ◽  
Ji Hwan Kim

The post-buckling of the functionally graded composite plate under thermal environment with aerodynamic loading is studied. The structural model has three layers with ceramic, FGM and metal, respectively. The outer layers of the sandwich plate are different homogeneous and isotropic material properties for ceramic and metal. Whereas the core is FGM layer, material properties vary continuously from one interface to the other in the thickness direction according to a simple power law distribution in terms of the volume fractions. Governing equations are derived by using the principle of virtual work and numerical solutions are solved through a finite element method. The first-order shear deformation theory and von-Karman strain-displacement relations are based to derive governing equations of the plate. Aerodynamic effects are dealt by adopting nonlinear third-order piston theory for structural and aerodynamic nonlinearity. The Newton-Raphson iterative method applied for solving the nonlinear equations of the thermal post-buckling analysis


1995 ◽  
Vol 38 (14) ◽  
pp. 2325-2345 ◽  
Author(s):  
Antonio D. Lanzo ◽  
Giovanni Garcea ◽  
Raffaele Casciaro

2009 ◽  
Vol 17 (2) ◽  
pp. 81-93 ◽  
Author(s):  
Meisam Mohammadi ◽  
Ali Reza Saidi ◽  
Emad Jomehzadeh

2012 ◽  
Vol 44 (3) ◽  
pp. 339-361 ◽  
Author(s):  
K. Sanjay Anandrao ◽  
R.K. Gupta ◽  
P. Ramchandran ◽  
G. Venkateswara Rao

2010 ◽  
Vol 36 (5) ◽  
pp. 545-560 ◽  
Author(s):  
K. Sanjay Anandrao ◽  
R.K. Gupta ◽  
P. Ramchandran ◽  
G. Venkateswara Rao

2017 ◽  
Vol 21 (6 Part B) ◽  
pp. 2957-2969
Author(s):  
Dragan Cukanovic ◽  
Gordana Bogdanovic ◽  
Aleksandar Radakovic ◽  
Dragan Milosavljevic ◽  
Ljiljana Veljovic ◽  
...  

A thermal buckling analysis of functionally graded thick rectangular plates accord?ing to von Karman non-linear theory is presented. The material properties of the functionally graded plate, except for the Poisson?s ratio, were assumed to be graded in the thickness direction, according to a power-law distribution, in terms of the volume fractions of the metal and ceramic constituents. Formulations of equilibrium and stability equations are derived using the high order shear deformation theory based on different types of shape functions. Analytical method for determination of the critical buckling temperature for uniform increase of temperature, linear and non-linear change of temperature across thickness of a plate is developed. Numeri?cal results were obtained in ?ATLAB software using combinations of symbolic and numeric values. The paper presents comparative results of critical buckling tempera?ture for different types of shape functions. The accuracy of the formulation presented is verified by comparing to results available from the literature.


Sign in / Sign up

Export Citation Format

Share Document