Levy Solution for Buckling Analysis of Functionally Graded Rectangular Plates

2009 ◽  
Vol 17 (2) ◽  
pp. 81-93 ◽  
Author(s):  
Meisam Mohammadi ◽  
Ali Reza Saidi ◽  
Emad Jomehzadeh
2017 ◽  
Vol 21 (6 Part B) ◽  
pp. 2957-2969
Author(s):  
Dragan Cukanovic ◽  
Gordana Bogdanovic ◽  
Aleksandar Radakovic ◽  
Dragan Milosavljevic ◽  
Ljiljana Veljovic ◽  
...  

A thermal buckling analysis of functionally graded thick rectangular plates accord?ing to von Karman non-linear theory is presented. The material properties of the functionally graded plate, except for the Poisson?s ratio, were assumed to be graded in the thickness direction, according to a power-law distribution, in terms of the volume fractions of the metal and ceramic constituents. Formulations of equilibrium and stability equations are derived using the high order shear deformation theory based on different types of shape functions. Analytical method for determination of the critical buckling temperature for uniform increase of temperature, linear and non-linear change of temperature across thickness of a plate is developed. Numeri?cal results were obtained in ?ATLAB software using combinations of symbolic and numeric values. The paper presents comparative results of critical buckling tempera?ture for different types of shape functions. The accuracy of the formulation presented is verified by comparing to results available from the literature.


2007 ◽  
Vol 81 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Tsung-Lin Wu ◽  
K.K. Shukla ◽  
Jin H. Huang

Author(s):  
Meisam Mohammadi ◽  
A. R. Saidi ◽  
Mehdi Mohammadi

In the present article, the buckling analysis of thin functionally graded rectangular plates resting on elastic foundation is presented. According to the classical plate theory, (Kirchhoff plate theory) and using the principle of minimum total potential energy, the equilibrium equations are obtained for a functionally graded rectangular plate. It is assumed that the plate is rested on elastic foundation, Winkler and Pasternak elastic foundations, and is subjected to in-plane loads. Since the plate is made of functionally graded materials (FGMs), there is a coupling between the equations. In order to remove the existing coupling, a new analytical method is introduced where the coupled equations are converted to decoupled equations. Therefore, it is possible to solve the stability equations analytically for special cases of boundary conditions. It is assumed that the plate is simply supported along two opposite edges in x direction and has arbitrary boundary conditions along the other edges (Levy boundary conditions). Finally, the critical buckling loads for a functionally graded plate with different boundary conditions, some aspect ratios and thickness to side ratios, various power of FGM and foundation parameter are presented in tables and figures. It is concluded that increasing the power of FGM decreases the critical buckling load and the load carrying capacity of plate increases where the plate is rested on Pasternak in comparison with the Winkler type.


Author(s):  
M Mohammadi ◽  
A R Saidi ◽  
E Jomehzadeh

In this article, a novel analytical method for decoupling the coupled stability equations of functionally graded (FG) rectangular plates is introduced. Based on the Mindlin plate theory, the governing stability equations that are coupled in terms of displacement components are derived. Introducing four new functions, the coupled stability equations are converted into two independent equations. The obtained equations have been solved for buckling analysis of rectangular plates with simply-supported two edges and arbitrary boundary conditions along the other edges (Levy boundary conditions). The critical buckling loads are presented for different loading conditions, various thickness to side and aspect ratios, some powers of FG materials, and various boundary conditions. The presented results for buckling of moderately thick FG plates with two simply-supported edges are reported for the first time.


2021 ◽  
Vol 264 ◽  
pp. 113712 ◽  
Author(s):  
Mohamed-Ouejdi Belarbi ◽  
Mohammed-Sid-Ahmed Houari ◽  
Ahmed Amine Daikh ◽  
Aman Garg ◽  
Tarek Merzouki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document