Hierarchical models for the static analysis of three-dimensional sandwich beam structures

2015 ◽  
Vol 133 ◽  
pp. 1284-1301 ◽  
Author(s):  
G. Giunta ◽  
S. Belouettar ◽  
H. Nasser ◽  
E.H. Kiefer-Kamal ◽  
T. Thielen
2017 ◽  
Vol 21 (7) ◽  
pp. 2382-2410 ◽  
Author(s):  
Gabriele De Pietro ◽  
Gaetano Giunta ◽  
Salim Belouettar ◽  
Erasmo Carrera

A static analysis of three-dimensional sandwich beam structures using one-dimensional modelling approach is presented within this paper. A family of several one-dimensional beam elements is obtained by hierarchically expanding the displacements over the cross-section and letting the expansion order a free parameter. The finite element approximation order over the beam axis is also a formulation free parameter (linear, quadratic and cubic elements are considered). The principle of virtual displacements is used to obtain the problem weak form and derive the beam stiffness matrix and equivalent load vectors in a nuclear, generic form. Displacements and stresses are presented for different load and constraint configurations. Results are validated towards three-dimensional finite element solutions and experimental results. Sandwich beams present a three-dimensional stress state and higher-order models are necessary for an accurate description. Numerical investigations show that fairly good results with reduced computational costs can be obtained by the proposed finite element formulation.


2014 ◽  
Vol 695 ◽  
pp. 588-591
Author(s):  
Khairul Salleh Basaruddin ◽  
Ruslizam Daud

This study aims to investigate the influence of trabecular bone in human mandible bone on the mechanical response under implant load. Three dimensional voxel finite element (FE) model of mandible bone was reconstructed from micro-computed tomography (CT) images that were captured from bone specimen. Two FE models were developed where the first consists of cortical bone, trabecular bone and implants, and trabecular bone part was excluded in the second model. A static analysis was conducted on both models using commercial software Voxelcon. The results suggest that trabecular bone contributed to the strength of human mandible bone and to the effectiveness of load distribution under implant load.


2018 ◽  
Vol 200 ◽  
pp. 380-395 ◽  
Author(s):  
Y. Yan ◽  
E. Carrera ◽  
A.G. de Miguel ◽  
A. Pagani ◽  
Q.-W. Ren

2014 ◽  
Vol 592-594 ◽  
pp. 1789-1793
Author(s):  
Amarjeet Singh ◽  
Vinod Kumar Mittal ◽  
Surjit Angra

Crankshaft is one of the most important components of an IC engine. Crankshaft should be checked carefully to ensure that its design is fully optimized. The main objective of this paper is to perform the static analysis on four cylinder engine crankshaft to find out its static strength and the maximum stress zone and analyzing the different methods for the optimization of crankshaft in terms of weight, stress and cost reduction. A three dimensional model of four cylinder engine crankshaft is prepared corresponding to actual conditions in Catia V5 software, static analysis is performed using Ansys under extreme operating conditions and the improvement methods for the optimum design are analyzed in terms of geometric improvement, appropriate material selection and methods used for manufacturing of crankshaft.


2014 ◽  
Vol 926-930 ◽  
pp. 3042-3045
Author(s):  
Si Cong Yuan ◽  
Xin Guo ◽  
Xiao Yu Wang ◽  
Xi Yong Pei

The three-dimensional solid models of five different length and shaft diameter anchor of bolt were constructed based on ANSYS software, and making static analysis and modal analysis on it to obtain the stress nephogram and natural frequency of bolt. Research on the stress condition of bolt in static analysis. In modal analysis, researching on the effect regular of the change of length and shaft diameter size on the bolt transverse vibration, the longitudinal and torsional vibration of three natural modes of different frequency, providing a reference for the structure design and reasonable choice of bolt type for corresponding condition.


Sign in / Sign up

Export Citation Format

Share Document