The Effect of Trabecular Bone on the Mechanical Response of Human Mandible with Implant

2014 ◽  
Vol 695 ◽  
pp. 588-591
Author(s):  
Khairul Salleh Basaruddin ◽  
Ruslizam Daud

This study aims to investigate the influence of trabecular bone in human mandible bone on the mechanical response under implant load. Three dimensional voxel finite element (FE) model of mandible bone was reconstructed from micro-computed tomography (CT) images that were captured from bone specimen. Two FE models were developed where the first consists of cortical bone, trabecular bone and implants, and trabecular bone part was excluded in the second model. A static analysis was conducted on both models using commercial software Voxelcon. The results suggest that trabecular bone contributed to the strength of human mandible bone and to the effectiveness of load distribution under implant load.

2019 ◽  
Vol 43 (4) ◽  
pp. 443-453
Author(s):  
Stephen M. Handrigan ◽  
Sam Nakhla

An investigation to determine the effect of porosity concentration and location on elastic modulus is performed. Due to advancements in testing methods, the manufacturing and testing of microbeams to obtain mechanical response is possible through the use of focused ion beam technology. Meanwhile, rigorous analysis is required to enable accurate extraction of the elastic modulus from test data. First, a one-dimensional investigation with beam theory, Euler–Bernoulli and Timoshenko, was performed to estimate the modulus based on load-deflection curve. Second, a three-dimensional finite element (FE) model in Abaqus was developed to identify the effect of porosity concentration. Furthermore, the current work provided an accurate procedure to enable accurate extraction of the elastic modulus from load-deflection data. The use of macromodels such as beam theory and three-dimensional FE model enabled enhanced understanding of the effect of porosity on modulus.


Author(s):  
P M Cattaneo ◽  
M Dalstra ◽  
L H Frich

Three-dimensional finite element analysis is one of the best ways to assess stress and strain distributions in complex bone structures. However, accuracy in the results may be achieved only when accurate input information is given. A semi-automated method to generate a finite element (FE) model using data retrieved from computed tomography (CT) was developed. Due to its complex and irregular shape, the glenoid part of a left embalmed scapula bone was chosen as working material. CT data were retrieved using a standard clinical CT scanner (Siemens Somatom Plus 2, Siemens AG, Germany). This was done to produce a method that could later be utilized to generate a patient-specific FE model. Different methods of converting Hounsfield unit (HU) values to apparent densities and subsequently to Young's moduli were tested. All the models obtained were loaded using three-dimensional loading conditions taken from literature, corresponding to an arm abduction of 90°. Additional models with different amounts of elements were generated to verify convergence. Direct comparison between the models showed that the best method to convert HU values directly to apparent densities was to use different equations for cancellous and cortical bone. In this study, a reliable method of determining both geometrical data and bone properties from patient CT scans for the semi-automated generation of an FE model is presented.


2003 ◽  
Vol 125 (3) ◽  
pp. 625-631 ◽  
Author(s):  
Tian Yong-tao ◽  
Li Cong-xin ◽  
Tong Wei ◽  
Wu Chang-hua

Spur gears were typically analyzed in the past using two-dimensional (2-D) Finite Element (FE) models. This is not adequate in many cases. A three-dimensional (3-D) FE model of a spur gear system, which accommodates all the gear teeth, the gear bodies, and the two transmission shafts, is developed in this paper using a sub-structuring method. The load between pinion and gear wheel is delivered by elastic frictional contact. The contact problem is solved according to the FE parametric quadratic programming method. The paper presents the shape of the contact region as well as the load distribution along the tooth width and profile. The results show that the transmission shafts have significant effects on the contact conditions including load distribution, contact region, and load deviation. The proposed method also applies to other types of gearing.


Author(s):  
Hang Yao ◽  
Wei Tong

Knowledge of mechanical properties of bones is important for the designing of bone replacements and implants as well as the research of bone diseases such as osteoporosis. However, bone, especially trabecular bone, is a highly anisotropic and heterogeneous living tissue. Micro-computed-tomography (micro-CT) and three-dimensional ultrasound imaging techniques are valuable tools for nondestructive investigation of three-dimensional trabecular bone architecture. From a reconstruction of trabecular bone, a numerical model such as finite element (FE) model can be generated. Using this FE model to simulate compression test, and comparing the simulation results to the results from real mechanical test of the same specimen, the relationship between the observed mechanical behaviors and the microstructure can be established.


Sign in / Sign up

Export Citation Format

Share Document