Finite Element Analysis Based on ANSYS of Bolt of Roof Bolter

2014 ◽  
Vol 926-930 ◽  
pp. 3042-3045
Author(s):  
Si Cong Yuan ◽  
Xin Guo ◽  
Xiao Yu Wang ◽  
Xi Yong Pei

The three-dimensional solid models of five different length and shaft diameter anchor of bolt were constructed based on ANSYS software, and making static analysis and modal analysis on it to obtain the stress nephogram and natural frequency of bolt. Research on the stress condition of bolt in static analysis. In modal analysis, researching on the effect regular of the change of length and shaft diameter size on the bolt transverse vibration, the longitudinal and torsional vibration of three natural modes of different frequency, providing a reference for the structure design and reasonable choice of bolt type for corresponding condition.

Author(s):  
Joonas Ponkala ◽  
Mohsin Rizwan ◽  
Panos S. Shiakolas

The current state of the art in coronary stent technology, tubular structures used to keep the lumen open, is mainly populated by metallic stents coated with certain drugs to increase biocompatibility, even though experimental biodegradable stents have appeared in the horizon. Biodegradable polymeric stent design necessitates accurate characterization of time dependent polymer material properties and mechanical behavior for analysis and optimization. This manuscript presents the process for evaluating material properties for biodegradable biocompatible polymeric composite poly(diol citrate) hydroxyapatite (POC-HA), approaches for identifying material models and three dimensional solid models for finite element analysis and fabrication of a stent. The developed material models were utilized in a nonlinear finite element analysis to evaluate the suitability of the POC-HA material for coronary stent application. In addition, the advantages of using femtosecond laser machining to fabricate the POC-HA stent are discussed showing a machined stent. The methodology presented with additional steps can be applied in the development of a biocompatible and biodegradable polymeric stents.


2013 ◽  
Vol 446-447 ◽  
pp. 581-584
Author(s):  
Guang Hui Li ◽  
Xu Hong ◽  
Lin Lin Guo ◽  
Wei Bo ◽  
Guang Yu Tan

According to the structure and characteristics of the HSK-A63 tool holder, we design and retrofit the non-standard tool holder with special function module. Establish and assemble three-dimensional entity models of embedded temperature measuring tool holder, ER collet/nut and flat end mill with Pro/E 5.0. Based on the establishment of the reasonable boundary conditions and meshing of the tool holder assembly, natural frequency and vibration modes of the tool holder assembly are calculated by modal analysis with the Ansys Workbench. These analysis results are the important research basis for the dynamic characteristics designing and dynamic balance researching to the tool system.


2008 ◽  
Vol 44-46 ◽  
pp. 685-690
Author(s):  
Lei Lei ◽  
Tian Min Guan ◽  
Li Jun Shan

Based on the human engineering theory the structure of the new Basketball wheelchair is designed. And the three dimensional model is drawn by means of the PRO/E software after the design. Next, the finite element analysis computation on the wheelchair structure is completed under the four work conditions by I-DEAS software. The result shows that its intensity satisfies the operation requirements and proves that the new Basketball wheelchair is comfortable, safe and reliable. The research of this paper has a more vital significance for enhancing the performance of basketball wheelchair and the development level of sport wheelchair.


2014 ◽  
Vol 556-562 ◽  
pp. 1059-1064
Author(s):  
Zhang Li ◽  
Xi Zhe Zang ◽  
Lai Chun Suo ◽  
Yan He Zhu ◽  
Jie Zhao

The heavy-load manipulator arm, an important part of the remote handling maintenance system of the large-scale multi-purpose deployer, plays a key role of the entire system. Its modeling and assembly was finished by Pro/E. Then use the ANSYS Workbench, finite element analysis software, to complete its static analysis and modal analysis through building a seamless connection between Pro/E and ANSYS Workbench. As a result, the overall deformation and static stiffness values of the manipulator arm were obtained through static analysis, and the former six-order natural frequency values and mode shapes were obtained through modal analysis. Finally, scheme of structure modification and new control method were presented by analyzing and comparing the results.


2013 ◽  
Vol 467 ◽  
pp. 306-311 ◽  
Author(s):  
M. Nikhamkin ◽  
B. Bolotov

Natural modes and frequencies of gas turbine engine hollow fan blades were experimentally investigated. The blades were produced with the method of super-plastic molding and pressure welding combination. Two independent experimental methods were used: three-component scanning laser vibrometry and impact modal analysis. Natural frequencies and vibration modes of a hollow fan blade and stress fields corresponding to the natural modes were got. The finite element modal analysis was carried out. The hollow fan blade was stated to have particular natural vibration modes. The investigation results can be used to detune the resonance vibrations and to verify calculation models.


Author(s):  
Manas Metar

Abstract: The Federation Internationale de L’Autobile (FIA) has been working on improving safety of drivers in open wheel racing series. Numerous incidents caused serious impacts on drivers’ lives. The car-to-car collision, car to environment collision and injuries due to flying debris are common threats to these drivers. In 2016 the introduction of Halo surrounding the cockpit was appreciated by the FIA. The following study includes the analysis of this Halo system using Finite Element Analysis (FEA). The dynamic, static and modal analysis is carried out with the help of Simscale software and the results obtained showed the values under permissible levels. Keywords: Finite Element Analysis, Static Analysis, Modal Analysis, Dynamic Analysis, F1 Halo, FIA.


2012 ◽  
Vol 538-541 ◽  
pp. 1935-1938 ◽  
Author(s):  
Ming Xia Yan

Three-dimensional model of the main shaft of JKM4×4 hoister was built based on Pro/E. After having applied boundary conditions and loads to the model, the finite element analysis for the main shaft was conducted under extreme operation conditions with ANSYS, the stress and displacement distribution was presented and the stress biggest hazard points were found. Based on the analysis results, improvement methods for the main shaft structure design was given out, which provides references for further optimal designing the main shaft of hoister.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
P. G. Golanó ◽  
L. Zanotti Fragonara ◽  
P. Morantz ◽  
R. Jourdain

The work focuses on the structural design and performances of a unique optical test system (OTS) used for measuring metre-scale optical surfaces. The investigation was carried out through a modal analysis. Two sets of results are presented. Both modal analysis of the entire OTS and transmissibility function related to its use as an optical system are carried out and analysed. The OTS is used for the measurements of the form accuracy at nanometre level of metre-scale concave surfaces. The OTS is a four and half-metre-tall mechanical structure made of bolted aluminium profiles, two structural platens, two dedicated precision positioning supports, a test piece, and a state-of-the-art laser interferometer. The OTS was numerically modelled and fully instrumented with triaxial accelerometers. The results of the modal analysis highlight the natural modes of the entire OTS. Both numerical and experimental methods are designed. The investigation methods are iterative. Indeed, a preliminary numerical model is created using finite element analysis (FEA). FEA results enable the determination of the dynamic range and suitable locations of accelerometers that are mounted onto the OTS for the experimental validation of the FEA model and further to carry out the transmissibility study. Natural frequencies, damping ratios, and mode shape values are obtained and scrutinized. These results are used for refining the FEA model. In fact, the lack of symmetry and the use of feet are identified as the key design feature that affects the OTS. The correlation between experimental and numerical results is within five percent for the first four modes. The results of the transmissibility study highlight the specific natural modes that influence the OTS measurement capability. Overall, the study enables to guide engineers and researchers towards a robust design using a validated and methodical approach.


2012 ◽  
Vol 151 ◽  
pp. 424-428
Author(s):  
Zhong Liang Cao ◽  
Yan Ding ◽  
Qing Ming Hu ◽  
Qiang Guo

Fixed beam gantry for large CNC boring and milling machine to bear the beams on the rail side apron, and other parts ram weight under weight and size of deformation produced a result of the assembly accuracy of less than standard, use three-dimensional modeling software UG and finite element analysis software ANSYS for dynamic beam gantry milling machine CNC beam three-dimensional modeling and modal analysis, based on weight and apron beams, the weight of ram and other components in relative deformation amplitude, and the gantry milling machine processing characteristics and overall design of the structural characteristics of machine tools, assembly of the beam is proposed to note some issues and some ways to solve the assembly size requirements, through finite element analysis of the deformation and comparing the actual measured value, the experiment proved data on-site assembly solution with a good theoretical support.


2014 ◽  
Vol 687-691 ◽  
pp. 398-401 ◽  
Author(s):  
Yu Tang ◽  
Yu Hou Wu ◽  
Ke Zhang ◽  
Jia Sun ◽  
En Wei Song

Designed a new type of wind turbine internal maintenance lifting platform using three-dimensional drawing software SolidWorks to establish the 3D model for the internal maintenance lifting platform. Imported platform bridge part to ANSYS Workbench static and modal analysis module; make load analysis according to the wind turbine operating environment and platform’s most dangerous operating condition and obtain the maximum stress of platform bridge structure and place and form of deformation. Obtained multiple order natural frequency and vibration mode of platform bridge structure through modal analysis. Compared with the standard, it shows that this structure satisfies the strength and stiffness requirement and will generate frequency affecting human body higher than the nature frequency. This thesis provides a theoretical foundation for designing the wind driven generator internal lifting platform and provides a reference for optimization design.


Sign in / Sign up

Export Citation Format

Share Document