Free vibration and buckling of foam-filled composite corrugated sandwich plates under thermal loading

2017 ◽  
Vol 172 ◽  
pp. 173-189 ◽  
Author(s):  
Bin Han ◽  
Ke-Ke Qin ◽  
Qian-Cheng Zhang ◽  
Qi Zhang ◽  
Tian Jian Lu ◽  
...  
2021 ◽  
pp. 109963622110204
Author(s):  
Fenglian Li ◽  
Wenhao Yuan ◽  
Chuanzeng Zhang

Based on the hyperbolic tangent shear deformation theory, free vibration and sound insulation of two different types of functionally graded (FG) honeycomb sandwich plates with negative Poisson’s ratio are studied in this paper. Using Hamilton’s principle, the vibration and vibro-acoustic coupling dynamic equations for FG honeycomb sandwich plates with simply supported edges are established. By applying the Navier’s method and fluid–solid interface conditions, the derived governing dynamic equations are solved. The natural frequencies and the sound insulation of FG honeycomb sandwich plates obtained in this work are compared with the numerical results by the finite element simulation. It is proven that the theoretical models for the free vibration and the sound insulation are accurate and efficient. Moreover, FG sandwich plates with different honeycomb cores are investigated and compared. The corresponding results show that the FG honeycomb core with negative Poisson’s ratio can yield much lower frequencies. Then, the influences of various geometrical and material parameters on the vibration and sound insulation performance are systematically analyzed.


2018 ◽  
Vol 33 (5) ◽  
pp. 673-724 ◽  
Author(s):  
Pavan Kumar ◽  
CV Srinivasa

Many review articles were published on free vibration and buckling of laminated composites, sandwich plates, and shells. The present article reviews the literature on the buckling and free vibration analysis of shear deformable isotropic and laminated composite sandwich plates and shells using various methods available for plates in the past few decades. Various theories, finite element modeling, and experimentations have been reported for the analysis of sandwich plates and shells. Few papers on functionally graded material plates, plates with smart skin (electrorheological, magnetorheological, and piezoelectric), and also viscoelastic materials were also reviewed. The scope for future research on sandwich plates and shells was also accessed.


2000 ◽  
Vol 235 (2) ◽  
pp. 317-340 ◽  
Author(s):  
C.M. WANG ◽  
K.K. ANG ◽  
L. YANG ◽  
E. WATANABE

2009 ◽  
Vol 16 (5) ◽  
pp. 495-503 ◽  
Author(s):  
S. Brischetto ◽  
E. Carrera ◽  
L. Demasi

This paper analyses the free vibration response of sandwich curved and flat panels by introducing the zig-zag function (—1)kζk(ZZF) in the displacement models of classical and higher order two-dimensional shell theories. The main advantage of ZZF is the introduction of a discontinuity in the first derivative, zig-zag effect, of the displacements distribution with correspondence to the core/faces interfaces. Results including and discarding ZZF are compared. Several values of face-to-core stiffness ratio (FCSR) and geometrical plate/shell parameters have been analyzed. Both fundamental vibration modes and those corresponding to high wave numbers are considered in the analysis. It is concluded that: (1) ZZF is highly recommended in the free vibration analysis of sandwich plates and shells; (2) the use of ZZF makes the error almost independent by FCSR parameter; (3) ZZF is easy to implement and its use should be preferred with respect to other `more cumbersome' refined theories.


2016 ◽  
Vol 20 (5) ◽  
pp. 617-638 ◽  
Author(s):  
MP Arunkumar ◽  
Jeyaraj Pitchaimani ◽  
KV Gangadharan

This paper presents the studies carried out on bending and free vibration behavior of truss core sandwich panel filled with foam typically used in aerospace applications. Equivalent stiffness properties for foam-filled truss core sandwich panel are derived by idealizing 3D foam-filled sandwich panel to an equivalent 2D orthotropic thick plate continuum. The accuracy of the derived elastic property is ensured by the numerical comparison of free vibration response of 3D and its equivalent 2D finite element model. The derived stiffness constants were used in closed form solution to evaluate the maximum deflection of the continuum. The results show that the free vibration and static behavior of the sandwich panel can be enhanced in due consideration to the space constraint by filling foam in the empty space of core. The results also reveal that triangular core foam-filled sandwich panel deflects less compared to other cores. From the free vibration analysis, effect of filling foam is effective in cellular and trapezoidal core.


Sign in / Sign up

Export Citation Format

Share Document