scholarly journals On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: A literature review

2019 ◽  
Vol 215 ◽  
pp. 127-149 ◽  
Author(s):  
C. Tuloup ◽  
W. Harizi ◽  
Z. Aboura ◽  
Y. Meyer ◽  
K. Khellil ◽  
...  

2019 ◽  
Vol 30 (16) ◽  
pp. 2351-2381 ◽  
Author(s):  
Corentin Tuloup ◽  
Walid Harizi ◽  
Zoheir Aboura ◽  
Yann Meyer ◽  
Kamel Khellil ◽  
...  

This article aims to provide a general overview on what has been achieved recently in the scientific community on the manufacturing, embedding, and wiring techniques of various kinds of piezoelectric devices for manufacturing monitoring and structural health monitoring applications of polymer–matrix composites.



Author(s):  
Wenyuan Luo ◽  
Yingtao Liu ◽  
Mrinal Saha

The objective of this paper is to develop in-situ structural health monitoring in polymer matrix composites using embedded bucky paper. Bucky paper based sandwich composites has been used for damage and load sensing in aerospace and defense applications due to high electrical conductivity, low density, and outstanding load sensitivity. Recent research focuses on improving mechanical, electrical, thermal properties of certain composites with improved gauge factor for sensing applications. To better understand certainly quantity strain change effects, it is essential to design composite materials and sensors for in-situ and embedded strain monitoring in composites using piezoresistance feedback. In this paper nanocomposite bucky papers are manufactured to monitor the load and damage condition in fiber reinforced polymer matrix composites. We first investigated the fabrication of bucky papers using different nanomaterials. Then the micro-scale morphology and structures are characterized using a scanning electron microscopy. The sensing function is achieved by correlating the piezoresistance variations to the stress or strain applied on the sensing area. Due to the conductive network formed and the tunneling resistance change in neighboring nanoparticles, the electrical resistance is able to show a good correlation with the load conditions. The prepared bucky papers are embedded in composites and the sensing capability is experimentally characterized under three-point bending experiments. The characterized membrane structures have the potential to be further applied to in-situ structural health monitoring and structural state awareness during their entire service lives.



Author(s):  
Nathan Salowitz ◽  
Yu-Hung Li ◽  
Sang-Jong Kim ◽  
Surajit Roy ◽  
Fu-Kuo Chang

High-temperature polymer-matrix composites (PMCs) are necessary and critical for the development of supersonic aircraft and orbital re-entry vehicles because of the need for light-weight design, high strength-to-weight ratios and high thermal stability in structures. Damage detection is a primary concern in composite structures because they are prone to multiple damage forms that can be hidden within the structure. Damage can include matrix cracking, fiber breakage, and delamination which can be caused by impacts, fatigue, or overloading. To overcome these shortfalls highly damage tolerant structures are employed to improve the safety of structures. Unfortunately this requires additional, potentially unnecessary, structural weight which is detrimental to aerospace structures. Acoustic ultrasound based structural health monitoring (SHM) has demonstrated the ability to overcome these problems by using arrays of Lead Zirconate Titanate piezoelectric transducers typically mounted on a flex circuit all of which is permanently affixed to, or embedded within, a structure [1] [2] [3] [4]. These transducers can excite and detect ultrasonic wave propagation in the structure and diagnostic algorithms, interpreting the signals, have been developed enabling real time inspection for damage. However, modern SHM systems are not capable of surviving the high temperatures experienced in the fabrication and service of High-temperature polymer matrix composites. In particular the Lead Zirconate Titanate piezoelectric elements typically depolarize and lose their functionality at around 200°C [5] [6]. Additionally, current SHM diagnostic algorithms are dependent on baseline data to compare signals to. These signals change with temperature and even just a few degree change can be detrimental to the system’s abilities. The current method for enabling functionality over a range of temperatures is to take numerous sets of baseline data at very high resolution across a range of temperatures. In order to adapt SHM for high temperature composites new piezoelectric materials must be developed capable of surviving elevated fabrication and operational temperatures. Small scale network components must be integrated to reduce detrimental effects of embedding SHM systems within the composite layup [7] [8] [9]. Additionally, methods for reducing the number of baseline data sets in the diagnostic algorithms must be developed. This paper presents development and testing of Bismuth Scandium Lead Titanate piezo ceramic transducers for high temperature SHM. These transducers are incorporated into a stretchable network system and mounted on a glass backing. Functionality is tested using a commercially available data acquisition system designed for SHM and intended for use with PZT transducers. Ongoing development of temperature compensation algorithms is also presented herein.



2021 ◽  
Vol 239 ◽  
pp. 112274
Author(s):  
Henry Helmer-Smith ◽  
Nicholas Vlachopoulos ◽  
Marc-André Dagenais ◽  
Bradley Forbes




2021 ◽  
Author(s):  
Wentao Wang ◽  
Jerome P. Lynch ◽  
Curt Wolf ◽  
John Norton ◽  
Todd W. King ◽  
...  


Author(s):  
Tuncay Kamas ◽  
Banibrata Poddar ◽  
Bin Lin ◽  
Lingyu Yu ◽  
Victor Giurgiutiu

The thermal effects at elevated temperatures mostly exist for pressure vessel and pipe (PVP) applications. The technologies for diagnosis and prognosis of PVP systems need to take the thermal effect into account and compensate it on sensing and monitoring of PVP structures. One of the extensively employed sensor technologies has been permanently installed piezoelectric wafer active sensor (PWAS) for in-situ continuous structural health monitoring (SHM). Using the transduction of ultrasonic elastic waves into voltage and vice versa, PWAS has been emerged as one of the major SHM sensing technologies. However, the dynamic characteristics of PWAS need to be explored prior its installation for in-situ SHM. Electro-mechanical impedance spectroscopy (EMIS) method has been utilized as a dynamic descriptor of PWAS and as a high frequency local modal sensing technique by applying standing waves to indicate the response of the PWAS resonator by determining the resonance and anti-resonance frequencies. Another SHM technology utilizing PWAS is guided wave propagation (GWP) as a far-field transient sensing technique by transducing the traveling guided ultrasonic waves (GUW) into substrate structure. The paper first presents EMIS method that qualifies and quantifies circular PWAS resonators under traction-free boundary condition and in an ambience with increasing temperature. The piezoelectric material degradation was investigated by introducing the temperature effects on the material parameters that are obtained from experimental observations as well as from related work in literature. GWP technique is also presented by inclusion of the thermal effects on the substrate material. The MATLAB GUI under the name of Wave Form Revealer (WFR) was adapted for prediction of the thermal effects on coupled guided waves and dynamic structural change in the substrate material at elevated temperature. The WFR software allows for the analysis of multimodal guided waves in the structure with affected material parameters in an ambience with elevated temperature.



Sign in / Sign up

Export Citation Format

Share Document