Dynamic buckling analysis of bi-directional functionally graded porous truncated conical shell with different boundary conditions

2020 ◽  
Vol 252 ◽  
pp. 112680
Author(s):  
Farshid Allahkarami ◽  
Maryam Ghassabzadeh Saryazdi ◽  
Hasan Tohidi

Author(s):  
A Asanjarani ◽  
S Satouri ◽  
A Alizadeh ◽  
MH Kargarnovin

Based on the first-order shear deformation theory, this paper focuses on the free vibration behavior of two-dimensional functionally graded material truncated conical shells resting on Winkler–Pasternak foundations. The materials are assumed to be isotropic and inhomogeneous in the length and thickness directions of truncated conical shell. The material properties of the truncated conical shell are varied in these directions according to power law functions. The derived governing equations are solved using differential quadrature method. Convergence of this method is checked and the fast rate of convergence is observed. The primary results of this study are obtained for ( SS− SL), ( CS− CL), and ( CS− SL) boundary conditions and compared with those available in the literatures. Furthermore, effects of geometrical parameters, material power indexes, mechanical boundary conditions, Winkler and Pasternak foundation moduli on the nondimensional frequency parameters of the two-dimensional functionally graded material truncated conical shell are studied.





Author(s):  
A Naderi ◽  
A R Saidi

In this study, an analytical solution for the buckling of a functionally graded annular sector plate resting on an elastic foundation is presented. The buckling analysis of the functionally graded annular sector plate is investigated for two typical, Winkler and Pasternak, elastic foundations. The equilibrium and stability equations are derived according to the Kirchhoff's plate theory using the energy method. In order to decouple the highly coupled stability equations, two new functions are introduced. The decoupled equations are solved analytically for a plate having simply supported boundary conditions on two radial edges. Satisfying the boundary conditions on the circular edges of the plate yields an eigenvalue problem for finding the critical buckling load. Extensive results pertaining to critical buckling load are presented and the effects of boundary conditions, volume fraction, annularity, plate thickness, and elastic foundation are studied.



2014 ◽  
Vol 627 ◽  
pp. 57-60 ◽  
Author(s):  
Wasim M.K. Helal ◽  
Dong Yan Shi

Functionally graded materials (FGMs) have become helpful in our engineering applications. Analysis of functionally graded material (FGM) plate during debonding case with different boundary conditions is the main purpose of this investigation. Elastic modulus (E) of functionally graded (FG) plate is assumed to vary continuously throughout the height of the plate, according the volume fraction of the constituent materials based on a modified sigmoid function, but the value of Poisson coefficient is constant. In this research, the finite element method (FEM) is used in order to show the shape of a plate made of FGM during debonding case with different boundary conditions. In the present investigation, the displacement value applied to the FGM plate is changed in order to find the relationship between the maximum von Mises stress and the displacement. Also, the relationship between the maximum shear stress and the displacement is carried out in the present work. The material gradient indexes of the FGM plate are changed from 1 to 10. The stress distributions around the debonding zone with all the material gradient indexes of the FGM plate are investigated in this work.



Sign in / Sign up

Export Citation Format

Share Document