Predicting in vitro genotoxicity by mouse lymphoma L5178Y thymidine kinase mutation assay (MLA): Accounting for simulated metabolic activation of chemicals

2017 ◽  
Vol 4 ◽  
pp. 45-53 ◽  
Author(s):  
P.I. Petkov ◽  
T.W. Schultz ◽  
M. Honma ◽  
K. Kirilov ◽  
S. Kotov ◽  
...  
2020 ◽  
Vol 7 (6) ◽  
pp. 619-625
Author(s):  
Jianfeng Shi ◽  
Huan Lian ◽  
Yuanli Huang ◽  
Danmei Zhao ◽  
Han Wang ◽  
...  

Abstract Glutaraldehyde (GA) is an important additive that is mainly used in animal-derived biomaterials to improve their mechanical and antimicrobial capacities. However, GA chemical toxicity and the metabolic mechanism remain relatively unknown. Therefore, residual GA has always been a major health risk consideration for animal-derived medical devices. In this study, extracts of three bio-patches were tested via the GA determination test and mouse lymphoma assay (MLA). The results showed that dissolved GA was a potential mutagen, which could induce significant cytotoxic and mutagenic effects in mouse lymphoma cells. These toxic reactions were relieved by the S9 metabolic activation (MA) system. Furthermore, we confirmed that GA concentration decreased and glutaric acid was generated during the catalytic process. We revealed GA could be oxidized via cytochrome P450 which was the main metabolic factor of S9. We found that even though GA was possibly responsible for positive reactions of animal-derived biomaterials’ biocompatibility evaluation, it may not represent the real situation occurring in human bodies, owing to the presence of various detoxification mechanisms including the S9 system. Overall, in order to achieve a general balance between risk management and practical application, rational decisions based on comprehensive analyses must be considered.


2010 ◽  
Vol 1 (1) ◽  
pp. 55 ◽  
Author(s):  
Akram Hassan ◽  
S.A Omar ◽  
Zaihan Ariffin

Silver amalgam/Silverfil Argentum® is a ‘Malaysian made amalgam’ has already been approved to be free from cytotoxicity, however its genotoxic effect has not been explored yet as biocompatible material. The objective of this study was to identify the genotoxic characteristic of silver amalgam by using Bacterial Reverse Mutation Assay (Ames test). This was a descriptive experimental study involving one strain of mutated Salmonella. The test material was evaluated in one mutated strain of Salmonella typhimurium TA1538 with and without an external metabolic activation system (S9 Mix). The bacteria were incubated for 48 hours at 37±0.5ºC before the colony growth or revertant colonies were counted. Data obtained were analyzed by using non-statistical method. The investigation of the genotoxic reaction on the test material revealed thatthe number of revertant colonies in both strains with and without S9 Mix were less than twice of the negative control even in the presence of high silver amalgam concentrations (5.0μg/ml). This study demonstratedthat the test material did not exhibit any mutagenic activity under the chosen conditions. Thus, silver amalgam could be considered to have no genotoxicity effect.


Mutagenesis ◽  
1988 ◽  
Vol 3 (6) ◽  
pp. 485-490 ◽  
Author(s):  
D.B. McGregor ◽  
I. Edwards ◽  
C.G. Riach ◽  
P. Cattanach ◽  
R. Martin ◽  
...  

2005 ◽  
Vol 24 (6) ◽  
pp. 427-434 ◽  
Author(s):  
Gunda Reddy ◽  
Gregory L. Erexson ◽  
Maria A. Cifone ◽  
Michael A. Major ◽  
Glenn J. Leach

Hexahydro-1,3,5-trinitro-1,3,5-triazine, a polynitramine compound, commonly known as RDX, has been used as an explosive in military munitions formulations since World War II. There is considerable data available regarding the toxicity and carcinogenicity of RDX. It has been classified as a possible carcinogen (U.S. Environmental Protection Agency, Integrated Risk Information System, 2005, www.epa.gov/IRIS/subst/0313.htm ). In order to better understand its gentoxic potential, the authors conducted the in vitro mouse lymphoma forward mutation and the in vivo mouse bone marrow micronucleus assays. Pure RDX (99.99%) at concentrations ranging from 3.93 to 500 μg/ml showed no cytotoxicity and no mutagenicity in forward mutations at the thymidine kinase (TK) locus in L5178Y mouse lymphoma cells, with and without metabolic activation. This finding was also confirmed by repeat assays under identical conditions. In addition, RDX did not induce micronuclei in mouse bone marrow cells when tested to the maximum tolerated dose of 250 mg/kg in male mice. These results show that RDX was not mutagenic in these in vitro and in vivo mammalian systems.


Toxins ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 318 ◽  
Author(s):  
Leticia Díez-Quijada ◽  
Ana I. Prieto ◽  
María Puerto ◽  
Ángeles Jos ◽  
Ana M. Cameán

The co-occurrence of various cyanobacterial toxins can potentially induce toxic effects different than those observed for single cyanotoxins, as interaction phenomena cannot be discarded. Moreover, mixtures are a more probable exposure scenario. However, toxicological information on the topic is still scarce. Taking into account the important role of mutagenicity and genotoxicity in the risk evaluation framework, the objective of this study was to assess the mutagenic and genotoxic potential of mixtures of two of the most relevant cyanotoxins, Microcystin-LR (MC-LR) and Cylindrospermopsin (CYN), using the battery of in vitro tests recommended by the European Food Safety Authority (EFSA) for food contaminants. Mixtures of 1:10 CYN/MC-LR (CYN concentration in the range 0.04–2.5 µg/mL) were used to perform the bacterial reverse-mutation assay (Ames test) in Salmonella typhimurium, the mammalian cell micronucleus (MN) test and the mouse lymphoma thymidine-kinase assay (MLA) on L5178YTk± cells, while Caco-2 cells were used for the standard and enzyme-modified comet assays. The exposure periods ranged between 4 and 72 h depending on the assay. The genotoxicity of the mixture was observed only in the MN test with S9 metabolic fraction, similar to the results previously reported for CYN individually. These results indicate that cyanobacterial mixtures require a specific (geno)toxicity evaluation as their effects cannot be extrapolated from those of the individual cyanotoxins.


Author(s):  
Sara Maisanaba ◽  
Ana I. Prieto ◽  
Maria Puerto ◽  
Daniel Gutiérrez-Praena ◽  
Eşref Demir ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document