Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete

2014 ◽  
Vol 50 ◽  
pp. 540-548 ◽  
Author(s):  
Sujing Zhao ◽  
Junjiang Fan ◽  
Wei Sun
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zhigang Zhu ◽  
Beixing Li ◽  
Mingkai Zhou

The present study looks for the feasibility of preparing UHPC with iron ore tailings (IOT for short) as fine aggregate. To enhance outstanding high performances, some influences on UHPC mortars were investigated such as different kinds of sands, different mix ratio of sands, and different largest particle size of fine aggregate. The results show that IOT have negligible poorer aggregate performance than silica sands but better than river sands. The strength of UHPC reaches the highest point when silica sands were instead 60% by IOT. As the largest particle size of fine aggregate is decreasing, the strength and frost resistance of UHPC were improved, but the liquidity was decreased. Micropowder of IOT affects the strength and the optimal content was 4%.


Author(s):  
Ariful Hasnat ◽  
Nader Ghafoori

AbstractThis study aimed to determine the abrasion resistance of ultra-high-performance concretes (UHPCs) for railway sleepers. Test samples were made with different cementitious material combinations and varying steel fiber contents and shapes, using conventional fine aggregate. A total of 25 UHPCs and two high-strength concretes (HSCs) were selected to evaluate their depth of wear and bulk properties. The results of the coefficient of variation (CV), relative gain in abrasion, and abrasion index of the studied UHPCs were also obtained and discussed. Furthermore, a comparison was made on the resistance to wear of the selected UHPCs with those of the HSCs typically used for prestressed concrete sleepers. The outcomes of this study revealed that UHPCs displayed excellent resistance against abrasion, well above that of HSCs. Amongst the utilized cementitious material combinations, UHPCs made with silica fume as a partial replacement of cement performed best against abrasion, whereas mixtures containing fly ash showed the highest depth of wear. The addition of steel fibers had a more positive influence on the abrasion resistance than it did on compressive strength of the studied UHPCs.


2015 ◽  
Vol 77 ◽  
pp. 233-240 ◽  
Author(s):  
P.S. Ambily ◽  
C. Umarani ◽  
K. Ravisankar ◽  
Prabhat Ranjan Prem ◽  
B.H. Bharatkumar ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1829
Author(s):  
Gang Ling ◽  
Zhonghe Shui ◽  
Xu Gao ◽  
Tao Sun ◽  
Rui Yu ◽  
...  

In this research, iron ore tailing (IOT) is utilized as the cementitious material to develop an eco-friendly ultra-high performance concrete (UHPC). The UHPC mix is obtained according to the modified Andreasen and Andersen (MAA) packing model, and the applied dosage of IOT is 10%, 20%, and 30% (by weight), respectively. The calculated packing density of different mixtures is consistent with each other. Afterwards, the fresh and hardened performance of UHPC mixtures with IOT are evaluated. The results demonstrate that the workability of designed UHPC mixtures is increased with the incorporation of IOT. The heat flow at an early age of designed UHPC with IOT is attenuated, the compressive strength and auto shrinkage at an early age are consequently reduced. The addition of IOT promotes the development of long-term compressive strength and optimization of the pore structure, thus the durability of designed UHPC is still guaranteed. In addition, the ecological estimate results show that the utilization of IOT for the UHPC design can reduce the carbon emission significantly.


Sign in / Sign up

Export Citation Format

Share Document