Improving reactivity of fly ash and properties of ensuing geopolymers through mechanical activation

2014 ◽  
Vol 57 ◽  
pp. 151-162 ◽  
Author(s):  
N. Marjanović ◽  
M. Komljenović ◽  
Z. Baščarević ◽  
V. Nikolić
2019 ◽  
Vol 83 ◽  
pp. 202-208 ◽  
Author(s):  
Yuancheng Li ◽  
Xiaobo Min ◽  
Yong Ke ◽  
Degang Liu ◽  
Chongjian Tang

2016 ◽  
Vol 35 (5) ◽  
pp. 1338-1343 ◽  
Author(s):  
M. Kanuchova ◽  
M. Drabova ◽  
M. Sisol ◽  
J. Mosej ◽  
L. Kozakova ◽  
...  

2007 ◽  
Vol 72 (6) ◽  
pp. 591-604 ◽  
Author(s):  
Gordana Stefanovic ◽  
Ljubica Cojbasic ◽  
Zivko Sekulic ◽  
Srdjan Matijasevic

Fly ash (FA) can be used in cement mixtures with certain limitations. The problem of the mentioned mixtures lies in the insufficient activity of the particles of FA in the reactions which are important for the establishment of the mechanical characteristics of cement. This is particularly true for the hydration reactions. As a result of this, cement pastes formed by mixing ash and clinker have worse characteristics compared to those of pure Portland cement (PC), especially in the early period of setting. As is well known, FA can be a good solution for the neutralization of the negative effects generated due to the creation of free Ca(OH)2 during the hydration of PC, provided that the problems with the low activity of FAare overcome. For the experiments in this study, a mixture of Portland cement and fly ash was used, the content of ash in the mixture being 30 % and 50 %. Mechanical activation was performed in a vibrating ring mill. The goal of this study was to demonstrate, through experimental results, that during the mechanical activation of a PC and FA mixture, the components in the mixture which mostly affect the direction, rate and range of hydration reactions occurring in the mixture had been activated. The values of the compressive strength of the activated and non-activated mixtures and the changes of their specific surface area proved that during the grinding process, the mixture PC+FA had been mechanically activated. The highest increase of compressive strength was achieved in the early period of setting, which indicates an improvement in the early hydration of the mixture. XRD, DTA and TG analyses showed that the alite (C3S) and belite (C2S) from the PC and a part of the fly ash were activated. .


2021 ◽  
Vol 25 (11) ◽  
pp. 36-41
Author(s):  
D.V. Bespolitov ◽  
N.A. Konovalova ◽  
O.N. Dabizha ◽  
P.P. Pankov ◽  
E.A. Rush

The possibility of utilization of inactive fly ash in road concrete compositions by bringing of ash into a non-equilibrium condition with increased reactivity by mechanical activation in a vibration eraser is investigated. It was revealed that the optimal content of binder and fly ash in samples of soil concrete was 8 and 10 wt. %, respectively. It is shown that, due to mechanical activation, the specific surface area of fly ash increases by 2 times, dehydration and carbonization occur and silicon is replaced by aluminum in silicon-oxygen tetrahedra. It has been established that an increase of the content of crystalline carbonate phases is the reason for an increase in the strength of ground concrete. It is determined that the introduction of mechanoactivated fly ash into the composition of soil concretes contributes to increasing their physical and mechanical characteristics to the maximum strength grade M100. This indicates the competitiveness of ground concrete and the possibility of direct use of inactive fly ash in road construction.


2019 ◽  
Vol 88 ◽  
pp. 182-190 ◽  
Author(s):  
Zhiliang Chen ◽  
Shengyong Lu ◽  
Minghui Tang ◽  
Jiamin Ding ◽  
Alfons Buekens ◽  
...  

1999 ◽  
Vol 39 (2) ◽  
pp. 115-121 ◽  
Author(s):  
Živko Sekulić ◽  
Svetlana Popov ◽  
Mirjana Đuričić ◽  
Aleksandra Rosić

2018 ◽  
Vol 761 ◽  
pp. 3-6 ◽  
Author(s):  
Violeta Nikolić ◽  
Miroslav Komljenović ◽  
Nataša Džunuzović ◽  
Tijana Ivanovic

This paper investigates the influence of mechanical activation of fly ash on the toxic metals immobilization by fly ash-based geopolymers. Fly ash was firstly mechanically and then alkali-activated. Mechanical activation of fly ash was conducted in a planetary ball mill. Alkali activation of fly ash was carried out at room temperature by use of sodium silicate solution as an activator. Toxic metals (Pb and Cr) were added in the form of water soluble salts during the synthesis of geopolymers. The immobilization process was assessed via investigation of the mechanical and leaching properties of geopolymers. Structural changes of geopolymers during the toxic metals immobilization were assessed by means of gas adsorption and SEM analyses. Mechanical activation of fly ash led to a significant increase in geopolymer strength and to a reduced leaching of toxic metals from geopolymers.


2017 ◽  
Vol 28 (3) ◽  
pp. 805-813 ◽  
Author(s):  
Sanjay Kumar ◽  
Gábor Mucsi ◽  
Ferenc Kristály ◽  
Péter Pekker

2012 ◽  
Vol 44 (2) ◽  
pp. 135-146 ◽  
Author(s):  
A. Terzic ◽  
Lj. Pavlovic ◽  
N. Obradovic ◽  
V. Pavlovic ◽  
J. Stojanovic ◽  
...  

Amount of fly ash which is and yet to be generated in the coming years highlights the necessity of developing new methods of the recycling where this waste can be reused in significant quantity. A new possibility for fly ash utilization is in high-temperature application (thermal insulators or/and refractory material products). As such, fly ash has to adequately answer the mechanical and thermal stability criteria. One of the ways of achieving it is by applying mechanical activation procedure on fly ash. In present study, fly ashes from two different power plants were mechanically activated in a planetary ball mill. Mechanically treated fly ashes were cemented with two different binders: standard Portland cement and high-aluminates cement. Physico-chemical analysis and investigation of mineralogical components of composites are emphasized, due to the changes occurred in fly ash during mechanical activation and sintering of composites. Macro-performance of the composites was correlated to the microstructure of fly ash studied by means of XRD and SEM analysis. Thermal stability of crystalline phases was investigated with DTA. Highlight was placed on determination of relationship between mechanically activated fly ash and obtained composites microstructure on one side and behavior of sintered composites on the other side.


Sign in / Sign up

Export Citation Format

Share Document