Proposal of an analytical procedure and a simplified numerical model for elastic response of single-storey timber shear-walls

2016 ◽  
Vol 102 ◽  
pp. 1101-1112 ◽  
Author(s):  
Daniele Casagrande ◽  
Simone Rossi ◽  
Tiziano Sartori ◽  
Roberto Tomasi
Author(s):  
Md Shahnewaz ◽  
Thomas Tannert ◽  
Marjan Popovski

Cross-laminated timber (CLT) is becoming a viable option for mid-rise buildings in North America. CLT walls are very effective in resisting lateral forces resulting from wind and seismic loads, yet no standard provisions are available to estimate the resistance of CLT shear walls under lateral loading. The present research investigated CLT shear wall’s performance by evaluating the preferred kinematic rocking behaviour. An analytical procedure was proposed to estimate the resistance of CLT shear walls in a platform type construction. Finite element models of CLT shear with various brackets and hold-downs connections were developed. The models were validated against experimental results. Furthermore, a parametric study on CLT shear walls with the variation of type and number of connectors was conducted. The resistance estimated from parametric study and against analytical were compared. The proposed formulas can be useful tool for the design of CLT platform-type buildings, however, require further experimental validation.


2018 ◽  
Vol 42 (2) ◽  
pp. 233-243
Author(s):  
HONGLIANG ZUO ◽  
Y LI ◽  
Jing DI ◽  
NAN GUO

2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 173-180
Author(s):  
Giorgia Di Gangi ◽  
Giorgio Monti ◽  
Giuseppe Quaranta ◽  
Marco Vailati ◽  
Cristoforo Demartino

The seismic performance of timber light-frame shear walls is investigated in this paper with a focus on energy dissipation and ductility ensured by sheathing-to-framing connections. An original parametric finite element model has been developed in order to perform sensitivity analyses. The model considers the design variables affecting the racking load-carrying capacity of the wall. These variables include aspect ratio (height-to-width ratio), fastener spacing, number of vertical studs and framing elements cross-section size. A failure criterion has been defined based on the observation of both the global behaviour of the wall and local behaviour of fasteners in order to identify the ultimate displacement of the wall. The equivalent viscous damping has been numerically assessed by estimating the damping factor which is in use in the capacity spectrum method. Finally, an in-depth analysis of the results obtained from the sensitivity analyses led to the development of a simplified analytical procedure which is able to predict the capacity curve of a timber light-frame shear wall.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Sung-Jun Pang ◽  
Kyung-Sun Ahn ◽  
Seog Goo Kang ◽  
Jung-Kwon Oh

AbstractIn this study, the lateral resistances of mass timber shear walls were investigated for seismic design. The lateral resistances were predicted by kinematic models with mechanical properties of connectors, and compared with experimental data. Four out of 7 shear wall specimens consisted of a single Ply-lam panel and withdrawal-type connectors. Three out of 7 shear wall specimens consisted of two panels made by dividing a single panel in half. The divided panels were connected by 2 or 4 connectors like a single panel before being divided. The applied vertical load was 0, 24, or 120 kN, and the number of connectors for connecting the Ply-lam wall-to-floor was 2 or 4. As a result, the tested data were 6.3 to 52.7% higher than the predicted value by kinematic models, and it means that the lateral resistance can be designed by the behavior of the connector, and the prediction will be safe. The effects of wall-to-wall connectors, wall-to-floor connectors and vertical loads on the shear wall were analyzed with the experimental data.


2020 ◽  
Vol 208 ◽  
pp. 110246 ◽  
Author(s):  
Giorgia Di Gangi ◽  
Cristoforo Demartino ◽  
Giuseppe Quaranta ◽  
Giorgio Monti

2020 ◽  
Vol 26 (1) ◽  
pp. 04019022 ◽  
Author(s):  
Daniel Way ◽  
Arijit Sinha ◽  
Frederick A. Kamke

2009 ◽  
Vol 31 (9) ◽  
pp. 2171-2181 ◽  
Author(s):  
Bo Källsner ◽  
Ulf Arne Girhammar

Sign in / Sign up

Export Citation Format

Share Document