Engineering properties and fracture behaviour of high volume palm oil fuel ash based fibre reinforced geopolymer concrete

2016 ◽  
Vol 111 ◽  
pp. 286-297 ◽  
Author(s):  
Iftekhair Ibnul Bashar ◽  
U. Johnson Alengaram ◽  
Mohd Zamin Jumaat ◽  
Azizul Islam ◽  
Helen Santhi ◽  
...  
2021 ◽  
Vol 1136 (1) ◽  
pp. 012046
Author(s):  
Bala Gopal Adapala ◽  
Durga Chaitanya Kumar Jagarapu ◽  
Syed Hamim Jeelani ◽  
B. Sarath Chandra Kumar ◽  
Arunakanthi Eluru

2015 ◽  
Vol 77 (12) ◽  
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mohd Warid Hussin ◽  
Abdul Rahman Mohd. Sam ◽  
Mostafa Samadi ◽  
Mohamed A. Ismail ◽  
...  

This paper presents the utilization of palm oil fuel ash and oil palm kernel shell as cement and sand replacement, respectively in the production of palm oil fuel ash based mortar mixes as part of new and innovative materials in the construction industry. The study includes basic properties such as water absorption, density, compressive strength, and microstructure test with regards to variations in the mix design process. In order to get better performance in terms of strength development, the ash used was subjected to heat treatment and grounded to the size of less than 2 µm. High volume of 80% palm oil fuel ash was used as cement replacement, while 25%, 50%, 75%, and 100% of oil palm kernel shell was used as sand replacement. The results indicated that the density of the mortar decreases with increasing volume of oil palm kernel ash as sand replacement. Three different types of mortar were produced with different percentages of oil palm kernel shell, which was high strength, medium strength, and low strength lightweight mortars.


2015 ◽  
Vol 93 ◽  
pp. 29-34 ◽  
Author(s):  
Nor Hasanah Abdul Shukor Lim ◽  
Mohamed A. Ismail ◽  
Han Seung Lee ◽  
Mohd Warid Hussin ◽  
Abdul Rahman Mohd. Sam ◽  
...  

2015 ◽  
Vol 77 (16) ◽  
Author(s):  
Mohd Warid Hussin ◽  
Nor Hasanah Abdul Shukor Lim ◽  
Abdul Rahman Mohd. Sam ◽  
Mostafa Samadi ◽  
Mohamed A. Ismail ◽  
...  

Palm oil fuel ash is a waste material that can be used as partial cement replacement. However, its reactivity as pozzolanic material depends on the size of the particle. This paper presents the effects of nano size palm oil fuel ash on the long term characteristics of mortar. The study covers basic properties of mortar including the morphology, porosity, compressive strength and microstructural with regards to the variations in the mix design of the mortar. The palm oil fuel ash used has gone through heat treatment and was ground to a nano size with the percentage replacement of cement used was 60%, 80% and 100%. The different types of mortar samples were cast in a 70x70x70mm cube for compressive strength test. All casting and testing of the samples were conducted in the laboratory at ambient temperature. The results show that the use of 80% nano size palm oil fuel ash has produced higher compressive strength at the age of 28 days by 32% compared to the control mortar. Grinding the palm oil fuel ash to a nano size particle has improved the reactivity of the ash and because of it is a waste material it reduces the cost of the mortar. The experimental result also show that the compressive strength of the 80% nano size palm oil fuel ash mortar at 365 days was 25% higher than its strength at 28 days. In addition, the porosity of the 80% nano palm oil fuel ash mortar was reduced by 51% at the age of 1 year. The overall results have revealed that the use of high volume nano palm oil fuel ash can enhances the mortar properties and due to the high percentage of replacement it can contribute to a more sustainable construction.


2012 ◽  
Vol 10 (4) ◽  
pp. 349-360 ◽  
Author(s):  
S. Homwuttiwong ◽  
C. Jaturapitakkul ◽  
P. Chindaprasirt

2022 ◽  
Vol 14 (1) ◽  
pp. 498
Author(s):  
Ghasan Fahim Huseien ◽  
Mohammad Ali Asaad ◽  
Aref A. Abadel ◽  
Sib Krishna Ghoshal ◽  
Hussein K. Hamzah ◽  
...  

Nowadays, an alkali-activated binder has become an emergent sustainable construction material as an alternative to traditional cement and geopolymer binders. However, high drying shrinkage and low durability performance in aggressive environments such as sulphuric acid and sulphate are the main problems of alkali-activated paste, mortar and concrete. Based on these factors, alkali-activated mortar (AAM) binders incorporating high-volume palm oil fuel ash (POFA), ground blast furnace slag (GBFS) and fly ash (FA) were designed to enhance their durability performance against aggressive environments. The compressive strength, drying shrinkage, loss in strength and weight, as well as the microstructures of these AAMs were evaluated after exposure to acid and sulphate solutions. Mortars made with a high volume of POFA showed an improved durability performance with reduced drying shrinkage compared to the control sample. Regarding the resistance against aggressive environments, AAMs with POFA content increasing from 0 to 70% showed a reduced loss in strength from 35 to 9% when subjected to an acid attack, respectively. Additionally, the results indicated that high-volume POFA binders with an increasing FA content as a GBFS replacement could improve the performance of the proposed mortars in terms of durability. It is asserted that POFA can significantly contribute to the cement-free industry, thus mitigating environmental problems such as carbon dioxide emission and landfill risks. Furthermore, the use of POFA can increase the lifespan of construction materials through a reduction in the deterioration resulting from shrinkage problems and aggressive environment attacks.


Sign in / Sign up

Export Citation Format

Share Document