The effect of coarse to fine aggregate ratio on the fresh and hardened properties of roller-compacted concrete pavement

2018 ◽  
Vol 169 ◽  
pp. 553-566 ◽  
Author(s):  
Mohammad Hashemi ◽  
Payam Shafigh ◽  
Mohamed Rehan Bin Karim ◽  
Cengiz Duran Atis
2020 ◽  
Vol 10 (11) ◽  
pp. 3707 ◽  
Author(s):  
Ali Ashrafian ◽  
Mohammad Javad Taheri Amiri ◽  
Parisa Masoumi ◽  
Mahsa Asadi-shiadeh ◽  
Mojtaba Yaghoubi-chenari ◽  
...  

In the field of pavement engineering, the determination of the mechanical characteristics is one of the essential processes for reliable material design and highway sustainability. Early determination of the mechanical characteristics of pavement is essential for road and highway construction and maintenance. Tensile strength (TS), compressive strength (CS), and flexural strength (FS) of roller-compacted concrete pavement (RCCP) are crucial characteristics. In this research, the classification-based regression models random forest (RF), M5rule model tree (M5rule), M5prime model tree (M5p), and chi-square automatic interaction detection (CHAID) are used for simulation of the mechanical characteristics of RCCP. A comprehensive and reliable dataset comprising 621, 326, and 290 data records for CS, TS, and FS experimental cases was extracted from several open sources in the literature. The mechanical properties are determined based on influential input combinations that are processed using principle component analysis (PCA). The PCA method specifies that volumetric/weighted content forms of experimental variables (e.g., coarse aggregate, fine aggregate, supplementary cementitious materials, water, and binder) and specimens’ age are the most effective inputs to generate better performance. Several statistical metrics were used to evaluate the proposed classification-based regression models. The RF model revealed an optimistic classification capacity of the CS, TS, and FS prediction of the RCCP in comparison with the CHAID, M5rule, and M5p models. Monte-Carlo simulation was used to verify the results in terms of the uncertainty and sensitivity of variables. Overall, the proposed methodology formed a reliable soft computing model that can be implemented for material engineering, construction, and design.


Author(s):  
Ali Ashrafian ◽  
Mohammad Javad Taheri Amiri ◽  
Mahsa Asadi-shiadeh ◽  
Isa Yaghoobi-chenari ◽  
Amir Mosavi ◽  
...  

In the field of pavement engineering, the determination of the mechanical characteristics is one of the essential process for reliable material design and highway sustainability. Early determination of mechanical characteristics of pavement is highly essential for road and highway construction and maintenance. Tensile strength (TS), compressive strength (CS) and flexural strength (FS) of roller compacted concrete pavement (RCCP) are very crucial characteristics as they are necessitated for many data from mixture proportions as input variables. In this research, the classification-based regression models named Random Forest (RF), M5rule model tree (M5rule), M5prime model tree (M5p) and Chi-square Automatic Interaction Detection (CHAID) are developed for simulation of the mechanical characteristics of RCCP. A comprehensive and reliable dataset comprising 621, 326 and 290 data records for CS, TS and FS experimental cases extracted from several open sources over the literature. The mechanical properties are developed based on influential inputs combination that processed using Principle Component Analysis (PCA). The applied PCA method as feature selection is specified that volumetric/weighted content forms of experimental variables (e.g., coarse aggregate, fine aggregate, supplementary cementitious materials, water and binder) and specimens’ age are the most effective inputs to generate the better performances. Several statistical metrics are measured to evaluate proposed classification-based regression models. RF model revealed an optimistic classification capacity of the CS, TS and FS prediction of the RCCP in comparison with the CHAID, M5rule, and M5p models. The research is extended for the results verification using Monte-carlo model for the uncertainty and sensitivity of variables importance analysis. Overall, the proposed methodology indicated a reliable soft computing model that can be implemented for the material engineering construction and design.


2017 ◽  
Vol 69 (24) ◽  
pp. 1288-1295 ◽  
Author(s):  
Ravi Kumar ◽  
Subash Chandra Bose Gurram ◽  
Ashwani Kumar Minocha

Concrete is most frequently used composite material. Concrete is homogeneous mix of fine aggregate, Coarse aggregate and binding medium of concrete paste .Due to `high demand of cement Co2 emission is very high, It leads to global warming. So in this project high volume fly ash concrete was incorporated. Fly ash is the waste material obtained from thermal power plant. In this paper we investigated about high volume fly ash in different percentage of replacement 55, 60, 75 percentage. Layered pavement is incorporated with Steel fiber in a different aspect ratio (15, 30, 40).layered pavement will give good thermal expansive properties. By varying fly ash content and Steel fibers Aspect ratio of different mixes were arrived hardened properties of these nine mixes were arrived such as Compression test, Split tensile test and Flexural test.


Sign in / Sign up

Export Citation Format

Share Document