fly ash concrete
Recently Published Documents


TOTAL DOCUMENTS

677
(FIVE YEARS 167)

H-INDEX

36
(FIVE YEARS 5)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 58
Author(s):  
Mohsin Ali Khan ◽  
Furqan Farooq ◽  
Mohammad Faisal Javed ◽  
Adeel Zafar ◽  
Krzysztof Adam Ostrowski ◽  
...  

To avoid time-consuming, costly, and laborious experimental tests that require skilled personnel, an effort has been made to formulate the depth of wear of fly-ash concrete using a comparative study of machine learning techniques, namely random forest regression (RFR) and gene expression programming (GEP). A widespread database comprising 216 experimental records was constructed from available research. The database includes depth of wear as a response parameter and nine different explanatory variables, i.e., cement content, fly ash, water content, fine and coarse aggregate, plasticizer, air-entraining agent, age of concrete, and time of testing. The performance of the models was judged via statistical metrics. The GEP model gives better performance with R2 and ρ equals 0.9667 and 0.0501 respectively and meet with the external validation criterion suggested in the previous literature. The k-fold cross-validation also verifies the accurateness of the model by evaluating R2, RSE, MAE, and RMSE. The sensitivity analysis of GEP equation indicated that the time of testing is the influential parameter. The results of this research can help the designers, practitioners, and researchers to quickly estimate the depth of wear of fly-ash concrete thus shortening its ecological susceptibilities that push to sustainable and faster construction from the viewpoint of environmentally friendly waste management.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yingli Gao ◽  
Kairui Duan ◽  
Shuncheng Xiang ◽  
Wei Zeng

As a kind of granular waste with complex composition and alkali corrosiveness, concrete slurry waste (CSW) has severe recycling limitations in the ordinary Portland cement (OPC). Considering this, a new type of geopolymer, prepared by granulated blast furnace slag/fly ash, concrete slurry waste, and powdered activators (sodium carbonate and different silicon sources including sodium metasilicate pentahydrate and silica fume), was adopted to conduct a comparative study with the OPC counterpart. In this study, the homogenized CSW was mixed in the OPC and geopolymer with a constant ratio of 50 wt%, respectively. Then the properties were studied in terms of the flowability, setting times, mechanical strengths, and microstructures. The results showed that better flowability (200 mm) could be achieved in the obtained geopolymer than in the OPC reference group (95 mm) by increasing the powdered activators. The setting time of the OPC was significantly shortened due to the addition of CSW. The strengths of geopolymer were supported by the produced C-A-S-H and carbonates, with less chemically bonded water than the hydration products in the reference group. The dominant size of pores in the hardened geopolymer was much smaller than that in the OPC group which was 80 nm. Silica fume could be the alternate of the sodium metasilicate pentahydrate and had an insignificant negative impact on the fresh and hardened properties and microstructures of the geopolymer when the incorporation rate was within 5%.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6956
Author(s):  
Zexin Yu ◽  
Zixi Xie ◽  
Tianyu Zhang ◽  
Gongbing Yue ◽  
Haibao Liu ◽  
...  

Alkaline electrolyzed water, a kind of clean green water with excellent characteristics such as high activity, strong alkalinity, high ion penetrating ability, electrical charge, and good molecule adsorption, was significant to the resource utilization of industrial fly ash waste. This paper studies highly active potassium-based alkaline electrolyzed water′s impact, compared with ordinary water, on the cement hydration process using microstructural methods such as a hydration heat test, differential thermal analysis, X-ray diffraction (XRD) pattern, and Scanning electron microscope (SEM) image analysis. Fly ash cement-based materials were first prepared with alkaline electrolyzed water as the mixing water. The alkaline electrolyzed water’s influence on fly ash paste workability and the mechanical properties of fly ash mortar for varying fly ash proportions were ratified. Then alkaline electrolyzed water with the best pH value was selected to prepare fly ash concrete, and its durability was studied. The test results showed that it is feasible to increase the utilization rate of fly ash by using alkaline electrolyzed water. Furthermore, it promoted the process of cement hydration, increased the rate of the hydration reaction, and the promotion effect increased with the increase in pH value of the alkaline electrolyzed water, and also promoted the effective decomposition of the vitreous shell of fly ash to stimulate its early activity. Concurrent tests with ordinary water paste showed that the water requirement for normal consistency and setting time with alkaline electrolyzed water paste were significantly less. Alkaline electrolyzed water also solved the problem related to the low early strength of fly ash mortar. Furthermore, using alkaline electrolyzed water with an optimum pH value of 11.5 to prepare fly ash concrete effectively reduced concrete′s carbonation depth and carbonation rate and lessened the chloride ion migration coefficient.


Sign in / Sign up

Export Citation Format

Share Document