Compressive behaviour and modelling of CFRP-confined ultra-high performance concrete under cyclic loads

2021 ◽  
Vol 310 ◽  
pp. 124949
Author(s):  
Liang Huang ◽  
Jianhe Xie ◽  
Liming Li ◽  
Baoqin Xu ◽  
Peiyan Huang ◽  
...  
2016 ◽  
Vol 845 ◽  
pp. 126-131
Author(s):  
Siti Aisyah Nurjannah ◽  
Bambang Budiono ◽  
Iswandi Imran ◽  
Saptahari Sugiri

Research on concrete material in many countries resulted a concrete type of Ultra High Performance Concrete (UHPC) which has a high performance in terms of compressive strength, ductility, durability, and modulus of elasticity using Reactive Powder Concrete (RPC). Research on structural engineering using RPC material shows better performance than normal concrete (NC) to resist gravity and cyclic loads. In this study, the experiments were conducted under the combination of constant axial and cyclic loads on the structure of the partial prestressed interior and exterior beam-column subassemblages with partial prestressed ratio value of 31.72% on the beam. The application of cyclic loading was conducted by displacement control based on the ACI 374.1-05. The purpose of this study was to determine the performance of structures based on three moment frame acceptance criteria presented in the ACI 374.1-05. From the test results, the interior and exterior beam-column subassemblage structure systems showed performance that adequated all of these criteria at the drift ratio of 3.50% and 2.20%, respectively.


PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


Sign in / Sign up

Export Citation Format

Share Document