Fiber-reinforced ultra-high performance concrete under tensile loads

Author(s):  
O. Millon ◽  
W. Riedel ◽  
K. Thoma ◽  
E. Fehling ◽  
M. Nöldgen
2019 ◽  
Vol 11 (S1) ◽  
pp. 35-51
Author(s):  
Shahnaz Basim ◽  
Farzad Hejazi ◽  
Raizal Saifulnaz Bin Muhammad Rashid

AbstractBeam–column joints play an important role in providing lateral stiffness and integrity of frames during dynamic loading such as earthquake. In the high humidity areas, during functioning of the building cracks occur, which leads to the corrosion of the reinforcement due to the environmental exposures. Therefore, one of the main failures mechanism of building during an earthquake is caused by easily yielding of corroded steel reinforcement, which leads to reduce functionality of the frame joints in transferring the loads. This study proposed a new design to reinforce the beam-column joints with embedded carbon fiber-reinforced polymer (CFRP) rods, due to their extremely high strength and stiffness, along with the fact that they will not rust or corrode and very light weight. CFRP rods are used in reinforced concrete (RC) frame and ultra-high-performance concrete (UHPC) frame subjected to dynamic load. The prototype of the proposed design is constructed as frame with conventional concrete and frame with UHPC material to conduct experiments Test as well as numerical analysis to evaluate the performance of the proposed joints under dynamic loads. The results showed improvement in the performance of the frames reinforced with embedded CFRP in joints in terms of lateral load resistance capacity, ductility behaviour, overall stiffness, and failure mechanism.


Sign in / Sign up

Export Citation Format

Share Document