Flexural design of precast, prestressed ultra-high-performance concrete members

PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.

Author(s):  
Ariful Hasnat ◽  
Nader Ghafoori

AbstractThis study aimed to determine the abrasion resistance of ultra-high-performance concretes (UHPCs) for railway sleepers. Test samples were made with different cementitious material combinations and varying steel fiber contents and shapes, using conventional fine aggregate. A total of 25 UHPCs and two high-strength concretes (HSCs) were selected to evaluate their depth of wear and bulk properties. The results of the coefficient of variation (CV), relative gain in abrasion, and abrasion index of the studied UHPCs were also obtained and discussed. Furthermore, a comparison was made on the resistance to wear of the selected UHPCs with those of the HSCs typically used for prestressed concrete sleepers. The outcomes of this study revealed that UHPCs displayed excellent resistance against abrasion, well above that of HSCs. Amongst the utilized cementitious material combinations, UHPCs made with silica fume as a partial replacement of cement performed best against abrasion, whereas mixtures containing fly ash showed the highest depth of wear. The addition of steel fibers had a more positive influence on the abrasion resistance than it did on compressive strength of the studied UHPCs.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1929 ◽  
Author(s):  
Yu-You Wu ◽  
Jing Zhang ◽  
Changjiang Liu ◽  
Zhoulian Zheng ◽  
Paul Lambert

Nanomaterials have been increasingly employed for improving the mechanical properties and durability of ultra-high-performance concrete (UHPC) with high volume supplementary cementitious materials (SCMs). Recently, graphene oxide (GO) nanosheets have appeared as one of the most promising nanomaterials for enhancing the properties of cementitious composites. To date, a majority of studies have concentrated on cement pastes and mortars with fewer investigations on normal concrete, ultra-high strength concrete, and ultra-high-performance cement-based composites with a high volume of cement content. The studies of UHPC with high volume SCMs have not yet been widely investigated. This paper presents an experimental investigation into the mini slump flow and physical properties of such a UHPC containing GO nanosheets at additions from 0.00 to 0.05% by weight of cement and a water–cement ratio of 0.16. The study demonstrates that the mini slump flow gradually decreases with increasing GO nanosheet content. The results also confirm that the optimal content of GO nanosheets under standard curing and under steam curing is 0.02% and 0.04%, respectively, and the corresponding compressive and flexural strengths are significantly improved, establishing a fundamental step toward developing a cost-effective and environmentally friendly UHPC for more sustainable infrastructure.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8291
Author(s):  
Mays A. Hamad ◽  
Mohammed Nasr ◽  
Ali Shubbar ◽  
Zainab Al-Khafaji ◽  
Zainab Al Masoodi ◽  
...  

The increase in cement production as a result of growing demand in the construction sector means an increase in energy consumption and CO2 emissions. These emissions are estimated at 7% of the global production of CO2. Ultra-high-performance concrete (UHPC) has excellent mechanical and durability characteristics. Nevertheless, it is costly and affects the environment due to its high amount of cement, which may reach 800–1000 kg/m3. In order to reduce the cement content, silica fume (SF) was utilized as a partial alternative to cement in the production of UHPC. Nevertheless, SF is very expensive. Therefore, the researchers investigated the use of supplementary cementitious materials cheaper than SF. Very limited review investigates addressed the impact of such materials on different properties of UHPC in comparison to that of SF. Thus, this study aims to summarize the effectiveness of using some common supplementary cementitious materials, including fly ashes (FA), ground granulated blast furnace slag (GGBS), metakaolin (MK) and rice husk ashes (RHA) in the manufacturing of UHPC, and comparing the performance of each material with that of SF. The comparison among these substances was also discussed. It has been found that RHA is considered a successful alternative to SF to produce UHPC with similar or even higher properties than SF. Moreover, FA, GGBS and MK can be utilized in combination with SF (as a partial substitute of SF) as a result of having less pozzolanic activity than SF.


2019 ◽  
Vol 13 (1) ◽  
pp. 147-162 ◽  
Author(s):  
Edwin Paul Sidodikromo ◽  
Zhijun Chen ◽  
Muhammad Habib

Introduction: Ultra-High-Performance Concrete (UHPC) is an advanced type of concrete in the Civil Engineering industry. It is a cement-based composite which exhibits improved mechanical and durable properties showing a high compressive strength of not less than 150 MPa and high tensile strength of not less than 7 MPa. Objective: In this article, a review of the use of a different type of supplementary cementitious materials (SCMs) including fibers is made for obtaining the desired UHPC. Discussion and Conclusion: For this, it is vital to understand the principles of UHPC. UHPC has several advantages over normal strength concrete (NSC) and high strength concrete (HSC) with some commercially ready UHPC’s available, but the use of it is restricted due to the limited design codes. The influence of the curing type also plays a vital role in the overall performance of UHPC.


Sign in / Sign up

Export Citation Format

Share Document