Characterizing damage modes and size effects in high-strength concrete under hydrostatic and triaxial stress states using X-ray microtomography

2021 ◽  
Vol 311 ◽  
pp. 125338
Author(s):  
Brett Williams ◽  
Anna Madra ◽  
William Heard ◽  
Steven Graham ◽  
Michael Grotke ◽  
...  
Author(s):  
Muhammad Armaghan Siffat ◽  
Muhammad Ishfaq ◽  
Afaq Ahmad ◽  
Khalil Ur Rehman ◽  
Fawad Ahmad

This study is supervised to assess the characteristics of the locally available wheat straw ash (WSA) to consume as a substitute to the cement and support in enhancing the mechanical properties of concrete. Initially, after incineration at optimum temperature of 800°C for 0.5, the ash of wheat straw was made up to the desirable level of fineness by passing through it to the several grinding cycles. Subsequently, the X-ray fluorescence (XRF) along with X-ray diffraction (XRD) testing conducted on ash of wheat straw for the evaluation its pozzolanic potential. Finally, the specimens of concrete were made by consuming 10% and 20% percentages of wheat straw ash as a replacement in concrete to conclude its impact on the compressive strength of high strength concrete. The cylinders of steel of dimensions 10cm diameter x 20cm depth were acquired to evaluate the compressive strength of high strength concrete. The relative outcomes of cylinders made of wheat straw ash substitution presented the slight increase in strength values of the concrete. Ultimately, the C-100 blends and WSA aided cement blends were inspected for the rheology of WSA through FTIR spectroscopy along with Thermogravimetric technique. The conclusions authenticate the WSA potential to replace cement in the manufacturing of the high strength concrete.


2012 ◽  
Vol 2 (3) ◽  
pp. 102-104 ◽  
Author(s):  
Suthar Sunil B ◽  
◽  
Dr. (Smt.) B. K. Shah Dr. (Smt.) B. K. Shah

PCI Journal ◽  
1984 ◽  
Vol 29 (3) ◽  
pp. 44-73 ◽  
Author(s):  
Harold J. Jobse ◽  
Saad E. Moustafa

Sign in / Sign up

Export Citation Format

Share Document