Bonding performance between ultra-high performance concrete and asphalt pavement layer

2021 ◽  
Vol 312 ◽  
pp. 125375
Author(s):  
Zhe Lu ◽  
Zhen-gang Feng ◽  
Dongdong Yao ◽  
Xinjun Li ◽  
Xiaolai Jiao ◽  
...  
2014 ◽  
Vol 41 (7) ◽  
pp. 615-623 ◽  
Author(s):  
Hoonhee Hwang ◽  
Sung Yong Park

In this paper, the results of basic tests conducted to evaluate the flexural behavior of lap-spliced joints that exploit the remarkable bonding performance of ultra-high performance concrete (UHPC) are presented. The effects of varying the lap-spliced length and joint length on the flexural behavior of the test members were examined. The failure pattern, load–deflection relationship, and load–strain relationship obtained by the static loading test were then analyzed with respect to the details of the joints. The results suggest lower bounds for the major test variables. A modified model, which considers the bonding performance of UHPC at the joint interface and the yield behavior of the reinforcement, is suggested on the basis of analytical models proposed for UHPC sections in previous studies. The corresponding results for this model are then compared with the test results.


PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


Sign in / Sign up

Export Citation Format

Share Document