scholarly journals Autogenous and total shrinkage of limestone calcined clay cement (LC3) concretes

2022 ◽  
Vol 314 ◽  
pp. 125720
Author(s):  
Quang Dieu Nguyen ◽  
Sumaiya Afroz ◽  
Yingda Zhang ◽  
Taehwan Kim ◽  
Wengui Li ◽  
...  
2021 ◽  
Vol 149 ◽  
pp. 106553
Author(s):  
Yu Chen ◽  
Shan He ◽  
Yu Zhang ◽  
Zhi Wan ◽  
Oğuzhan Çopuroğlu ◽  
...  

Author(s):  
Temitope Funmilayo Awolusi ◽  
Adebayo Olatunbosun Sojobi ◽  
Daniel O. Oguntayo ◽  
Olufunke O. Akinkurolere ◽  
B.O. Orogbade

2021 ◽  
Vol 141 ◽  
pp. 106334
Author(s):  
Ran Li ◽  
Lei Lei ◽  
Tongbo Sui ◽  
Johann Plank

2021 ◽  
Vol 1036 ◽  
pp. 240-246
Author(s):  
Jin Tang ◽  
Su Hua Ma ◽  
Wei Feng Li ◽  
Hui Yang ◽  
Xiao Dong Shen

The use of calcined clay and limestone as supplementary cementitious materials, can have a certain influence on the hydration of Portland cement. This paper reviewed the influence of limestone and calcined clay and the mixture of limestone and calcined clay on the hydration of cement. Both limestone and calcined clay accelerate the hydration reaction in the early hydration age and enhance the properties of cement. Limestone reacts with C3A to form carboaluminate, which indirectly stabilized the presence of ettringite, while calcined clay consumed portlandite to form C-(A)-S-H gel, additional hydration products promote the densification of pore structure and increase the mechanical properties. The synergistic effect of calcined clay and limestone stabilize the existence of ettringite and stimulate the further formation of carboaluminate, as well as the C-(A)-S-H gel, contributed to a dense microstructure.


2021 ◽  
Vol 902 ◽  
pp. 145-151
Author(s):  
Islam Orynbassarov ◽  
Chang Seon Shon ◽  
Jong Ryeol Kim ◽  
Umut Bektimirova ◽  
Aidyn Tugelbayev

Ordinary Portland cement (OPC) is one of the most widely used construction materials in civil engineering infrastructure construction but it is susceptible to sulfate attack. One of the ways to improve the sulfate resistance of an OPC mortar/concrete is to replace a certain amount of OPC with different pozzolanic materials such as ground granulated blast furnace slag (GGBFS) and metakaolin. The use of pozzolanic materials to mortar/concrete not only enhances durability but also reduces carbon dioxide (CO2) emission due to the less usage of OPC at the initial construction state. As considering these aspects, limestone calcined clay cement (LC3) has been developed in recent decades. However, the influence of LC3 on sulfate attack resistance has not been fully evaluated. Therefore, this study investigated the efficiency of LC3 mortar mixtures against sulfate attack at an early age (approximately 4.5 months) after two different curing periods, namely 1-day and 3-day curing, since the strength of the LC3 mixture is lower than OPC mixtures. To evaluate the synergistic effect of a combination of LC3 and GGBFS on the sulfate resistance, the LC3 and OPC mixtures containing 25% GGBFS were also assessed in terms of density, porosity, compressive strength, volumetric expansion, and weight changes. The experiment results show that the expansion of the LC3 mixture regardless of the addition of GGBFS and an initial curing strength made a plateau after a rapid increase up to 7 days, while the expansion of the OPC mixture kept increasing throughout the period. Furthermore, the addition of GGBFS to OPC or LC3 mixture provides the synergistic effect on reducing the expansion due to sulfate attack. Therefore, if LC3 mixture has high initial strength (min. 15 MPa) and dense microstructure to minimize the penetration of sulfate ion into the mixture, it is expected that LC3 mixture is more efficient than OPC mixture against the sulfate attack.


Sign in / Sign up

Export Citation Format

Share Document