A self-tuning robust full-state feedback control design for the magnetic levitation system

2018 ◽  
Vol 78 ◽  
pp. 175-185 ◽  
Author(s):  
Baris Bidikli ◽  
Alper Bayrak
Author(s):  
Pratik Vernekar ◽  
Vitthal Bandal

This paper presents three types of sliding mode controllers for a magnetic levitation system. First, a proportional-integral sliding mode controller (PI-SMC) is designed using a new switching surface and a proportional plus power rate reaching law. The PI-SMC is more robust than a feedback linearization controller in the presence of mismatched uncertainties and outperforms the SMC schemes reported recently in the literature in terms of the convergence rate and settling time. Next, to reduce the chattering phenomenon in the PI-SMC, a state feedback-based discrete-time SMC algorithm is developed. However, the disturbance rejection ability is compromised to some extent. Furthermore, to improve the robustness without compromising the chattering reduction benefits of the discrete-time SMC, mismatched uncertainties like sensor noise and track input disturbance are incorporated in a robust discrete-time SMC design using multirate output feedback (MROF). With this technique, it is possible to realize the effect of a full-state feedback controller without incurring the complexity of a dynamic controller or an additional discrete-time observer. Also, the MROF-based discrete-time SMC strategy can stabilize the magnetic levitation system with excellent dynamic and steady-state performance with superior robustness in the presence of mismatched uncertainties. The stability of the closed-loop system under the proposed controllers is proved by using the Lyapunov stability theory. The simulation results and analytical comparisons demonstrate the effectiveness and robustness of the proposed control schemes.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2674 ◽  
Author(s):  
Rizka Bimarta ◽  
Thuy Vi Tran ◽  
Kyeong-Hwa Kim

This paper proposes a frequency-adaptive current control design for a grid-connected inverter with an inductive–capacitive–inductive (LCL) filter to overcome the issues relating to both the harmonic distortion and frequency variation in the grid voltage. The current control scheme consists of full-state feedback control to stabilize the system and integral control terms to track the reference in the presence of disturbance and uncertainty. In addition, the current controller is augmented with resonant control terms to mitigate the harmonic component. The control scheme is implemented in the synchronous reference frame (SRF) to effectively compensate two harmonic orders at the same time by using only one resonant term. Moreover, to tackle the frequency variation issue in grid voltage, the frequency information which is extracted from the phase-locked loop (PLL) block is processed by a moving average filter (MAF) for the purpose of eliminating the frequency fluctuation caused by the harmonically distorted grid voltage. The filtered frequency information is employed to synthesize the resonant controller, even in the environment of frequency variation. To implement full-state feedback control for a grid-connected inverter with an LCL filter, all the state variables should be available. However, the increase in number of sensing devices leads to the rise of cost and complexity for hardware implementation. To overcome this challenge, a discrete-time full-state current observer is introduced to estimate all the system states. When the grid frequency is subject to variation, the discrete-time implementation of the observer in the SRF requires an online discretization process because the system matrix in the SRF includes frequency information. This results in a heavy computational burden for the controller. To resolve such a difficulty, a discrete-time observer in the stationary reference frame is employed in the proposed scheme. In the stationary frame, the discretization of the system model can be accomplished with a simple offline method even in the presence of frequency variation since the system matrix does not include the frequency. To select desirable gains for the full-state feedback controller and full-state observer, an optimal linear quadratic control approach is applied. To validate the practical effectiveness of the proposed frequency-adaptive control, simulation and experimental results are presented.


Author(s):  
Muhamad Rausyan Fikri ◽  
Djati Wibowo Djamari

This study investigated the capability of a group of agents to form a desired shape formation by designing the feedback control using a linear quadratic regulator. In real application, the state condition of agents may change due to some particular problems such as a slow input response. In order to compensate for the problem that affects agent-to-agent coordination, a robust regulator was implemented into the formation algorithm. In this study, a linear quadratic regulator as the full-state feedback of robust regulator method for shape formation was considered. The result showed that a group of agents can form the desired shape (square) formation with a modification of the trajectory shape of each agent. The results were validated through numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document