A state-feedback control approach via inertial delay observer for Magnetic Levitation system

Author(s):  
Neha Singru ◽  
Divyesh Ginoya ◽  
P. D. Shendge ◽  
S.B. Phadke
2017 ◽  
Vol 11 (22) ◽  
pp. 1055-1063
Author(s):  
Rafael Antonio Acosta Rodriguez ◽  
Octavio Jose Salcedo Parra ◽  
Giovanny Mauricio Tarazona Bermudez

This paper evaluates the nonlinear control applied to a magnetic levitating plant, it is explained in detail the nonlinear model of the plant, the state variables, perturbation vector. A state feedback control was triggered by applying a state observer. Finally it was modeled under the control law found in the presence of disturbances.


Author(s):  
Hao Chen ◽  
Zhenzhen Zhang ◽  
Huazhang Wang

This paper investigates the problem of robust H ∞ control for linear systems. First, the state-feedback closed-loop control algorithm is designed. Second, by employing the geometric progression theory, a modified augmented Lyapunov–Krasovskii functional (LKF) with the geometric integral interval is established. Then, parameter uncertainties and the derivative of the delay are flexibly described by introducing the convex combination skill. This technique can eliminate the unnecessary enlargement of the LKF derivative estimation, which gives less conservatism. In addition, the designed controller can ensure that the linear systems are globally asymptotically stable with a guaranteed H ∞ performance in the presence of a disturbance input and parameter uncertainties. A liquid monopropellant rocket motor with a pressure feeding system is evaluated in a simulation example. It shows that this proposed state-feedback control approach achieves the expected results for linear systems in the sense of the prescribed H ∞ performance.


Sign in / Sign up

Export Citation Format

Share Document