scholarly journals Stop helping pathogens: engineering plant susceptibility genes for durable resistance

2021 ◽  
Vol 70 ◽  
pp. 187-195
Author(s):  
Hernan Garcia-Ruiz ◽  
Boris Szurek ◽  
Guido Van den Ackerveken
Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1928
Author(s):  
Lei Cui ◽  
Katharina Hanika ◽  
Richard G. F. Visser ◽  
Yuling Bai

Coffee (Coffea spp.) is an economically important crop widely cultivated in (sub) tropical countries worldwide. Commercial coffee production relies mainly on two related species, namely C. arabica and C. canephora. Due to their perennial growth habit, cultivation practices, and narrow genetic diversity, coffees are constantly exposed to many diseases and pests. Coffee leaf rust (Hemileia vastatrix Berk. et Br.), coffee berry disease (Colletotrichum kahawae Bridge and Waller), and coffee wilt disease (Gibberella xylarioides Heim and Saccas/Fusarium xylarioides) are the top fungal diseases affecting C. arabica and C. canephora production areas worldwide. In many regions, chemical-based control measures are widely used and are the only way to control the diseases. Developing resistant cultivars is one of the prerequisites for increasing sustainable market demand and agriculture. However, desired and required resistance traits are not always available in the gene pool. Furthermore, from other crops it is clear that dominant resistance genes introduced into varieties are not durable because of pathogen variability and the emergence of new races of the different pathogens. Utilization of altered susceptibility genes (S genes) offers a novel and alternative strategy for the breeding of durable and broad-spectrum resistance. The S gene encodes a host factor that facilitates a compatible interaction with the pathogen, and impairment of S genes leads to loss-of-susceptibility. In this review, guidelines for effective identification, characterization, and utilization of dysfunctional S genes are proposed to aid breeding activities in order to introduce durable resistance in Coffea spp. Several candidate S genes likely contributing to the susceptibility of Colletotrichum spp., Fusarium spp., and Meloidogyne spp. are discussed. With the rapid development of genetic engineering techniques, including CRISPR-associated systems, we now have the potential to accelerate the application of S genes to achieve durable resistance in coffee.


Author(s):  
Eleni Koseoglou ◽  
Jan M. van der Wolf ◽  
Richard G.F. Visser ◽  
Yuling Bai

Euphytica ◽  
2021 ◽  
Vol 217 (4) ◽  
Author(s):  
Sy Mamadou Traore ◽  
Suoyi Han ◽  
Papias Binagwa ◽  
Wen Xu ◽  
Xiangyu Chen ◽  
...  

AbstractPowdery mildew disease caused by Oidium arachidis poses a threat to peanut production in Africa. Loss of function mutants of specific Mlo (Mildew Locus O) genes have provided broad-spectrum and durable resistance against pathogen in many crop species. Since there is huge potential to utilize susceptibility gene-mediated resistance in crop improvement, genome-wide mining of susceptibility genes is required for further researches. However, the susceptibility genes have not been characterized in peanut genome. In this research study, the genome of the cultivated peanut was used as reference to identify the AhMlo loci. Our results revealed that 25 AhMlo loci were identified and distributed on the chromosomes of the cultivated peanut. Eleven AhMlo loci were located on the A-genome while the remaining 14 on the B-genome. Variable number of inserted intron sequences (4–14) and transmembrane helix (4–8) were observed in the coding sequence of the AhMlo loci. Furthermore, phylogenetic analysis of the AhMlo loci along with homologs from other species has clustered the AhMlo loci into six clades. Three AhMlo loci were clustered in the clade V known to regroup the powdery susceptibility loci in dicots. Additionally, four core promoters were predicted on the promoter region of the specific AhMlo along with cis-regulatory elements related to PM susceptibility. These results provided strong evidence of the identification and distribution of the Mlo loci in the cultivated peanut genome and the identified specific AhMlo loci can be used for loss of susceptibility study.


2008 ◽  
Vol 41 (23) ◽  
pp. 28
Author(s):  
MICHELE G. SULLIVAN
Keyword(s):  

2009 ◽  
Vol 37 (1) ◽  
pp. 29
Author(s):  
MICHELE G. SULLIVAN
Keyword(s):  

2002 ◽  
Vol 20 (3) ◽  
pp. 138-142
Author(s):  
William E. Klingeman

Abstract The bagworm (Thyridopteryx ephemeraeformis (Haworth)) is a polyphagous, native pest of numerous deciduous and evergreen ornamental plants. Bagworm larvae were used to investigate host plant susceptibility among ten species and cultivars of maples that are economically important and commonly encountered in landscapes in the eastern United States. Data analyses from 48-hour choice assays, conducted in the laboratory during 2000 and 2001, indicated that differences existed among maples for bagworm feeding preferences and host plant susceptibility. Results from the 48-hour trials were not as accurate as seasonal no-choice assays, however. No-choice assays during both seasons quantified resistance among maples that limited larval bagworm survival and development. Measurements of larval feeding injury demonstrated resistance in paperbark maple (Acer griseum (Franch.) Pax) and trident maple (A. buergerianum Miq.) when compared with other maples. Laboratory results were corroborated during 2001 by a no-choice field assay, in which early instar bagworm larvae performed well on the majority of maples. In contrast, paperbark maple and trident maple were resistant to bagworm feeding, while ‘Autumn Blaze’ Freeman maple (A. x freemanii E. Murray), a hybrid cross obtained by breeding A. rubrum with A. saccharinum, showed moderate resistance.


Sign in / Sign up

Export Citation Format

Share Document