scholarly journals A pure proactive scheduling algorithm for multiple earth observation satellites under uncertainties of clouds

2016 ◽  
Vol 74 ◽  
pp. 1-13 ◽  
Author(s):  
Jianjiang Wang ◽  
Erik Demeulemeester ◽  
Dishan Qiu
Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6660
Author(s):  
Lihao Liu ◽  
Zhenghong Dong ◽  
Haoxiang Su ◽  
Dingzhan Yu

While monolithic giant earth observation satellites still have obvious advantages in regularity and accuracy, distributed satellite systems are providing increased flexibility, enhanced robustness, and improved responsiveness to structural and environmental changes. Due to increased system size and more complex applications, traditional centralized methods have difficulty in integrated management and rapid response needs of distributed systems. Aiming to efficient missions scheduling in distributed earth observation satellite systems, this paper addresses the problem through a networked game model based on a game-negotiation mechanism. In this model, each satellite is viewed as a “rational” player who continuously updates its own “action” through cooperation with neighbors until a Nash Equilibria is reached. To handle static and dynamic scheduling problems while cooperating with a distributed mission scheduling algorithm, we present an adaptive particle swarm optimization algorithm and adaptive tabu-search algorithm, respectively. Experimental results show that the proposed method can flexibly handle situations of different scales in static scheduling, and the performance of the algorithm will not decrease significantly as the problem scale increases; dynamic scheduling can be well accomplished with high observation payoff while maintaining the stability of the initial plan, which demonstrates the advantages of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document