Integrated scheduling problem for earth observation satellites based on three modeling frameworks: an adaptive bi-objective memetic algorithm

2021 ◽  
Author(s):  
Zhongxiang Chang ◽  
Zhongbao Zhou ◽  
Lining Xing ◽  
Feng Yao
Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1430 ◽  
Author(s):  
Jintian Cui ◽  
Xin Zhang

Emergency observations are missions executed by Earth observation satellites to support urgent ground operations. Emergency observations become more important for meeting the requirements of highly dynamic and highly time-sensitive observation missions, such as disaster monitoring and early warning. Considering the complex scheduling problem of Earth observation satellites under emergency conditions, a multi-satellite dynamic mission scheduling model based on mission priority is proposed in this paper. A calculation model of mission priority is designed for emergency missions based on seven impact factors. In the satellite mission scheduling, the resource constraints of scheduling are analyzed in detail, and the optimization objective function is built to maximize the observation mission priority and mission revenues, and minimize the waiting time for missions that require urgency for execution time. Then, the hybrid genetic tabu search algorithm is used to obtain the initial satellite scheduling plan. In case of the dynamic arrival of new emergency missions before scheduling plan releases, a dynamic scheduling algorithm based on mission priority is proposed to solve the scheduling problem caused by newly arrived missions and to obtain the scheduling plan of newly arrived missions. A simulation experiment was conducted for different numbers of initial missions and newly arrived missions, and the scheduling results were evaluated with a model performance evaluation function. The results show that the execution probability of high-priority missions increased because the mission priority was taken into account in the model. In the case of more satellite resources, when new missions dynamically arrived, the satellite resources can be reasonably allocated to these missions based on the mission priority. Overall, this approach reduces the complexity of the dynamic adjustment and maintains the stability of the initial scheduling plan.


2020 ◽  
Vol 10 (16) ◽  
pp. 5616 ◽  
Author(s):  
Yuning Chen ◽  
Ji Lu ◽  
Renjie He ◽  
Junwei Ou

Earth observation satellites (EOSs) are taking a large number of pictures with increasing resolution which produce massive image data. Satellite data transmission becomes the bottleneck part in the process of EOS resource management. In this paper, we study the earth observation satellite integrated scheduling problem (EOSIS) where the imaging activities and download activities are considered integratively. We propose an integer linear programming model to formulate the problem. Due to the NP-hardness of the problem, we propose an efficient local search heuristic (ELSH) to solve problems of large size. ELSH uses a dedicated local search method to guarantee algorithm performance and efficient constraint handling mechanisms to guarantee algorithm efficiency. Numerical experimental results show that the algorithm demonstrates excellent performance on a set of benchmark instances. The ELSH achieves optimal results for all small-size instances (with 50 targets, two satellites, and three ground stations), and is very robust for large instances with up to 2000 targets. Moreover, the proposed ELSH easily dominates the state-of-the-art algorithm.


2018 ◽  
Vol 6 (5) ◽  
pp. 399-420
Author(s):  
Ye Zhang ◽  
Xiaoxuan Hu ◽  
Waiming Zhu ◽  
Peng Jin

Abstract This paper addresses the integrated Earth observation satellite scheduling problem. It is a complicated problem because observing and downloading operations are both involved. We use an acyclic directed graph model to describe the observing and downloading integrated scheduling problem. Based on the model which considering energy constraints and storage capacity constraints, we develop an efficient solving method using a novel quantum genetic algorithm. We design a new encoding and decoding scheme that can generate feasible solution and increase the diversity of the population. The results of the simulation experiments show that the proposed method solves the integrated Earth observation satellite scheduling problem with good performance and outperforms the genetic algorithm and greedy algorithm on all instances.


Author(s):  
Yingchun Xia ◽  
Zhiqiang Xie ◽  
Yu Xin ◽  
Xiaowei Zhang

The customized products such as electromechanical prototype products are a type of product with research and trial manufacturing characteristics. The BOM structures and processing parameters of the products vary greatly, making it difficult for a single shop to meet such a wide range of processing parameters. For the dynamic and fuzzy manufacturing characteristics of the products, not only the coordinated transport time of multiple shops but also the fact that the product has a designated output shop should be considered. In order to solve such Multi-shop Integrated Scheduling Problem with Fixed Output Constraint (MISP-FOC), a constraint programming model is developed to minimize the total tardiness, and then a Multi-shop Integrated Scheduling Algorithm (MISA) based on EGA (Enhanced Genetic Algorithm) and B&B (Branch and Bound) is proposed. MISA is a hybrid optimization method and consists of four parts. Firstly, to deal with the dynamic and fuzzy manufacturing characteristics, the dynamic production process is transformed into a series of time-continuous static scheduling problem according to the proposed dynamic rescheduling mechanism. Secondly, the pre-scheduling scheme is generated by the EGA at each event moment. Thirdly, the jobs in the pre-scheduling scheme are divided into three parts, namely, dispatched jobs, jobs to be dispatched, and jobs available for rescheduling, and at last, the B&B method is used to optimize the jobs available for rescheduling by utilizing the period when the dispatched jobs are in execution. Google OR-Tools is used to verify the proposed constraint programming model, and the experiment results show that the proposed algorithm is effective and feasible.


Sign in / Sign up

Export Citation Format

Share Document