The robust (minmax regret) assembly line worker assignment and balancing problem

2018 ◽  
Vol 93 ◽  
pp. 27-40 ◽  
Author(s):  
Jordi Pereira
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wenrui Jin ◽  
Zhaoxu He ◽  
Qiong Wu

PurposeDue to the market trend of low-volume and high-variety, the manufacturing industry is paying close attention to improve the ability to hedge against variability. Therefore, in this paper the assembly line with limited resources is balanced in a robust way that has good performance under all possible scenarios. The proposed model allows decision makers to minimize a posteriori regret of the selected choice and hedge against the high cost caused by variability.Design/methodology/approachA generalized resource-constrained assembly line balancing problem (GRCALBP) with an interval data of task times is modeled and the objective is to find an assignment of tasks and resources to the workstations such that the maximum regret among all the possible scenarios is minimized. To properly solve the problem, the regret evaluation, an exact solution method and an enhanced meta-heuristic algorithm, Whale Optimization Algorithm, are proposed and analyzed. A problem-specific coding scheme and search mechanisms are incorporated.FindingsTheory analysis and computational experiments are conducted to evaluated the proposed methods and their superiority. Satisfactory results show that the constraint generation technique-based exact method can efficiently solve instances of moderate size to optimality, and the performance of WOA is enhanced due to the modified searching strategy.Originality/valueFor the first time a minmax regret model is considered in a resource-constrained assembly line balancing problem. The traditional Whale Optimization Algorithm is modified to overcome the inferior capability and applied in discrete and constrained assembly line balancing problems.


2008 ◽  
Vol 156 (3) ◽  
pp. 352-367 ◽  
Author(s):  
Cristóbal Miralles ◽  
José P. García-Sabater ◽  
Carlos Andrés ◽  
Manuel Cardós

2021 ◽  
Vol 54 (1) ◽  
pp. 13-18
Author(s):  
Niloofar Katiraee ◽  
Martina Calzavara ◽  
Serena Finco ◽  
Daria Battini

2021 ◽  
Author(s):  
Hamid YILMAZ

Abstract Assembly lines appear with various differentiations in order to better include the disabled in the labor market and to increase production efficiency. In this way, the optimal workforce assignment problem that emerges heterogeneously is called assembly line worker assignment and balancing problem (ALWABP). This paper addresses the ALWABP where the simple version is enriched by considering sequence-dependent setup times between tasks. A mixed integer linear programming model is presented and a simulated annealing algorithm is developed such as an NP-hard problem. In order to test the proposed solutions, 640 benchmark problems in the literature were combined and used. The solutions obtained through using the proposed algorithm are compared with the mixed integer programming model on the small-size test problems. Experimental results show that the proposed algorithm is more effective and robust for a large set of benchmark problems.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Paraskevi Th. Zacharia ◽  
Andreas C. Nearchou

PurposeThis paper considers the assembly line worker assignment and balancing problem of type-2 (ALWABP-2) with fuzzy task times. This problem is an extension of the (simple) SALBP-2 in which task times are worker-dependent and concurrently uncertain. Two criteria are simultaneously considered for minimization, namely, fuzzy cycle time and fuzzy smoothness index.Design/methodology/approachFirst, we show how fuzzy concepts can be used for managing uncertain task times. Then, we present a multiobjective genetic algorithm (MOGA) to solve the problem. MOGA is devoted to the search for Pareto-optimal solutions. For facilitating effective trade-off decision-making, two different MO approaches are implemented and tested within MOGA: a weighted-sum based approach and a Pareto-based approach.FindingsExperiments over a set of fuzzified test problems show the effect of these approaches on the performance of MOGA while verifying its efficiency in terms of both solution and time quality.Originality/valueTo the author’s knowledge, no previous published work in the literature has studied the biobjective assembly line worker assignment and balancing problem of type-2 (ALWABP-2) with fuzzy task times.


Sign in / Sign up

Export Citation Format

Share Document