An extensive operations and maintenance planning problem with an efficient solution method

2018 ◽  
Vol 95 ◽  
pp. 151-162 ◽  
Author(s):  
Javad Seif ◽  
Andrew J. Yu
2012 ◽  
Vol 63 (4) ◽  
pp. 819-830 ◽  
Author(s):  
Marc St-Hilaire ◽  
John W. Chinneck ◽  
Steven Chamberland ◽  
Samuel Pierre

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jianfei Ye ◽  
Huimin Ma

In order to solve the joint optimization of production scheduling and maintenance planning problem in the flexible job-shop, a multiobjective joint optimization model considering the maximum completion time and maintenance costs per unit time is established based on the concept of flexible job-shop and preventive maintenance. A weighted sum method is adopted to eliminate the index dimension. In addition, a double-coded genetic algorithm is designed according to the problem characteristics. The best result under the circumstances of joint decision-making is obtained through multiple simulation experiments, which proves the validity of the algorithm. We can prove the superiority of joint optimization model by comparing the result of joint decision-making project with the result of independent decision-making project under fixed preventive maintenance period. This study will enrich and expand the theoretical framework and analytical methods of this problem; it provides a scientific decision analysis method for enterprise to make production plan and maintenance plan.


2018 ◽  
Vol 13 (1) ◽  
pp. 108-116
Author(s):  
Phanindra Prasad Bhandari ◽  
Shree Ram Khadka

 An attempt of shifting as more people as possible and/or their logistics from a dangerous place to a safer place is an evacuation planning problem. Such problems modeled on network have been extensively studied and the various efficient solution procedures have been established. The solution strategies for these problems are based on source-sink path augmentation and the flow function satisfies the flow conservation at each intermediate node. Besides this, the network flow problem in which flow may not be conserved at node necessarily could also be used to model the evacuation planning problem. This paper proposes a model for maximum flow evacuation planning problem on a single-source-single-sink static network with integral arc capacities with holding capability of evacuees in the temporary shelter at intermediate nodes and extends the model into the dynamic case. Journal of the Institute of Engineering, 2017, 13(1): 108-116


2018 ◽  
Vol 14 (1) ◽  
pp. 107-114
Author(s):  
Phanindra Prasad Bhandari ◽  
Shree Ram Khadka

Shifting as many people as possible from disastrous area to safer area in a minimum time period in an efficient way is an evacuation planning problem (EPP). Modeling the evacuation scenarios reflecting the real world characteristics and investigation of an efficient solution to them have become a crucial due to rapidly increasing number of natural as well as human created disasters. EPPs modeled on network have been extensively studied and the various efficient solution procedures have been established where the flow function satisfies the flow conservation at each intermediate node. Besides this, the network flow problem in which flow may not be conserved at nodes necessarily could also be useful to model the evacuation planning problem. This paper proposes an efficient solution procedure for maximum flow evacuation planning problem of later kind on a single-source-single-sink dynamic network with integral arc capacities with holding capability of flow (evacuees) in the temporary shelter at intermediate nodes. Journal of the Institute of Engineering, 2018, 14(1): 107-114


Sign in / Sign up

Export Citation Format

Share Document