Effect of molybdate post-sealing on the corrosion resistance of zinc phosphate coatings on hot-dip galvanized steel

2008 ◽  
Vol 50 (4) ◽  
pp. 962-967 ◽  
Author(s):  
Bi-Lan Lin ◽  
Jin-Tang Lu ◽  
Gang Kong
2018 ◽  
Vol 4 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Nilesh S. Bagal ◽  
Vaibhav S. Kathavate ◽  
Pravin P. Deshpande

AbstractThe present study aims at deposition of zinc phosphate coatings on low carbon steel with incorporated nano- TiO2 particles by chemical phosphating method. The coated low carbon steel samples were assessed in corrosion studies using electrochemical impedance spectroscopy and potentiodynamic polarization techniques (Tafel) in 3.5% NaCl solution. Morphology and chemical composition of the coatings were analyzed by scanning electron microscopy and energy dispersive X-ray spectroscopy in order to observe growth of coating. Significant variations in the coating weight, porosity and corrosion resistance were observed with the addition of nano- TiO2 in the phosphating bath. Corrosion rate of nano-TiO2 chemical phosphate coated samples was found to be 3.5 milli inches per year which was 3 times less than the normal phosphate-coated sample (8 mpy). Electrochemical impedance spectroscopy studies reveal reduction of porosity of nano-TiO2 phosphate coated samples. It was found that nano-TiO2 particles in the phosphating solution yielded uniform phosphate coatings of higher coating weight, fewer defects and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal phosphating bath).


2015 ◽  
Vol 327 ◽  
pp. 218-225 ◽  
Author(s):  
M. Tamilselvi ◽  
P. Kamaraj ◽  
M. Arthanareeswari ◽  
S. Devikala

2019 ◽  
Vol 374 ◽  
pp. 935-943 ◽  
Author(s):  
Haowei Huang ◽  
Huihui Wang ◽  
Yuhui Xie ◽  
Dexuan Dong ◽  
Xiang Jiang ◽  
...  

Author(s):  
Nilesh S. Bagal ◽  
Vaibhav S. Kathavate ◽  
Pravin P. Deshpande

The present study aims at deposition of zinc phosphate coatings with the incorporation of nano Titanium dioxide particles by chemical phosphating method. Zinc phosphate coatings were developed on low carbon steel by using nano TiO2 in the standard phosphating bath. The Coated low carbon steel samples were assessed for corrosion studies using electrochemical impedance spectroscopy and potentiodynamic polarisation techniques in 3.5% NaCl solution. Chemical composition of the coatings was analysed by energy dispersive X-ray spectroscopy (EDX). Significant variations in the coating weight, porosity and corrosion resistance were observed with the addition of nano TiO2 in the phosphating bath. Corrosion rate of nano TiO2 incorporated chemical phosphate coated samples was found to be 3.5 mpy which was 4 times less than the bare uncoated low carbon steel (~14 mpy). Electrochemical impedance spectroscopy studies revels in the reduction of porosity in nano TiO2 phosphate coated samples. It was found that nano TiO2 particles in the phosphating solution yielded phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal phosphating bath).


Author(s):  
Nilesh S. Bagal ◽  
Vaibhav S. Kathavate ◽  
Pravin P. Deshpande

The present study aims at deposition of zinc phosphate coatings with the incorporation of nano Titanium dioxide particles by chemical phosphating method. Zinc phosphate coatings were developed on low carbon steel by using nano TiO2 in the standard phosphating bath. The Coated low carbon steel samples were assessed for corrosion studies using electrochemical impedance spectroscopy and potentiodynamic polarisation techniques in 3.5% NaCl solution. Chemical composition of the coatings was analysed by energy dispersive X-ray spectroscopy (EDX). Significant variations in the coating weight, porosity and corrosion resistance were observed with the addition of nano TiO2 in the phosphating bath. Corrosion rate of nano TiO2 incorporated chemical phosphate coated samples was found to be 3.5 mpy which was 4 times less than the bare uncoated low carbon steel (~14 mpy). Electrochemical impedance spectroscopy studies revels in the reduction of porosity in nano TiO2 phosphate coated samples. It was found that nano TiO2 particles in the phosphating solution yielded phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal phosphating bath).


2012 ◽  
Vol 626 ◽  
pp. 569-574 ◽  
Author(s):  
Khalid Abdalla ◽  
Rahmat Azmi ◽  
Aziz Azizan

Zinc phosphate coating is commonly used for corrosion protection of metallic materials, mainly mild steel. In this study, influence of the pH of phosphating bath on the surface morphology and corrosion resistance of zinc phosphate coatings on mild steel was investigated. The phosphate layers were deposited on steel from phosphating bath at different pH values (1.75 ~ 2.75). The surface morphology and composition of phosphate coatings were investigated via scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX). The corrosion resistance of the coating was evaluated by polarization curves (anodic and cathodic) in an aerated 3.5% NaCl solution. The results showed that better surface coverage and corrosion resistance for the steel phosphated at pH 2.75.


2012 ◽  
Vol 626 ◽  
pp. 183-189
Author(s):  
Khalid Abdalla ◽  
Rahmat Azmi ◽  
Aziz Azizan

The influence of phosphating temperature on the surface morphology and corrosion resistance of zinc phosphate coatings on mild steel was investigated. The phosphate layers were deposited on steel from phosphating bath at different temperatures (45 ~ 75 C). The surface morphology and composition of phosphate coatings were investigated via scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX). The corrosion resistance of the coatings was evaluated by polarization curves (anodic and cathodic) in an aerated 3.5% NaCl solution. The results showed that the increase in temperature of the phosphating bath up to 55 C caused an increase in surface coverage and in turn resulted in better corrosion resistance. At high temperature (65 °C and 75 °C) the deposition coverage decreased indicating that the best coverage for the phosphate layer on the metal surface was achieved at 55 °C


Sign in / Sign up

Export Citation Format

Share Document